Mikroskopische Strukturen für rüttelsichere Stecker

Presseaussendung der TU Wien vom 14.11.2017

In einem österreichisch-deutschen Forschungsprojekt erzeugt man mit Lasertechnik mikroskopische Strukturen auf elektrischen Steckern um die Ausfallssicherheit zu erhöhen.

Über Wackelkontakte hat sich wohl jeder schon geärgert. Schlechte Steckverbindungen sind häufig die Ursache für ein Versagen elektronischer Geräte. Gerade in der Automobilindustrie, wo immer mehr Elektronik eingesetzt wird, spielt die Qualität von Steckkontakten eine wichtige Rolle – und hier kann die Materialwissenschaft helfen. Spezielle Strukturen auf Mikro- und Nanoskala, die sich mit Hilfe neuer Lasertechniken rasch und kostengünstig herstellen lassen, sollen nun für mehr Ausfallssicherheit sorgen.

Die Rumpelpiste zerstört den Steckkontakt

Seit Jahren wächst die Anzahl von Sensoren und Prozessoren, die in Autos verbaut werden, und dieser Trend wird sich durch den Siegeszug der Elektroautos wohl noch weiter fortsetzen. „Wenn man mit einem Auto über eine rumpelige Buckelpiste fährt, sodass das ganze Fahrzeug in Vibration versetzt wird, ist das eigentlich das Schlechteste, was den Steckkontakten passieren kann“, erklärt Prof. Carsten Gachot vom Institut für Konstruktionswissenschaften und Technische Logistik der TU Wien. Die Stecker beginnen auf winziger Skala ein kleines Stückchen hin und her zu wackeln, man spricht von „Fretting“. Diese minimalen Bewegungen genügen um für Verschleiß zu sorgen, der schließlich den Kontakt zum Versagen bringen kann.

Selbst wenn die Wahrscheinlichkeit für die Zerstörung eines einzelnen Steckkontaktes recht gering ist, ergibt sich durch ihre große Anzahl eine hohe Ausfallswahrscheinlichkeit: „In einem modernen Auto gehobener Kategorie sind mehrere Kilometer Kabel verbaut, mit tausenden Steckkontakten“, sagt Carsten Gachot. So ist es nicht überraschend, dass nach Angaben des deutschen Automobilclubs ADAC Elektronik-Ausfälle die Pannenursache Nummer eins sind.

Mikro- und Nanostrukturen für besseren Halt

Bekämpfen lässt sich das Problem mit neuen Erkenntnissen aus der Tribologie – der Wissenschaftsdisziplin, die sich mit Reibung und Verschleiß auseinandersetzt. „Das Problem ist, dass wir zwei schwer vereinbare Anforderungen gleichzeitig erfüllen müssen“, sagt Gachot. „Einerseits sollen die Kontakte halten und auch durch Vibrationen nicht gelockert werden, andererseits soll es möglich sein, mit relativ geringem Kraftaufwand die Stecker ein- und wieder auszustecken.“

Die Lösung ist, die Stecker mit einer feinen Struktur zu versehen. „Verschiedene Muster auf mikroskopischer Skala, die dem Material aufgeprägt werden, können das Reibe- und Verschleißverhalten drastisch beeinflussen“, sagt Gachot. „In Simulationsberechnungen und Experimenten untersuchen wir an der TU Wien, welche Strukturen das beste Ergebnis liefern.“

Mit Laserlicht eingebrannt

Um diese Strukturen rasch und kostengünstig herstellen zu können, arbeitet Carsten Gachot mit Forschungsgruppen der Universität des Saarlandes in Saarbrücken und von der TU Dresden zusammen. „Die entscheidende neue Idee ist, Laserlicht zur Herstellung der feinen Strukturen zu verwenden“, sagt Gachot. Man nützt dabei die Welleneigenschaften des Lichts: So wie sich in einem Teich komplizierte Wellenmuster ergeben, wenn man zwei Steine hineinwirft, lässt sich die Materialoberfläche mit einem komplizierten Wellenmuster beleuchten, wenn man einen Laserstrahl in zwei Teile aufspaltet und beide dann auf der Oberfläche überlagert. Das entstehende Lichtmuster verdampft das Material an bestimmten Stellen, an anderen Orten aber bleibt die Oberfläche unversehrt. So können, je nachdem, wie man die Strahlen miteinander überlagert, in kurzer Zeit unterschiedliche Mikro- und Nanostrukturen erzeugt werden.

„Mit bisherigen Methoden wäre es nicht wirtschaftlich gewesen, Steckkontakte mit solchen Strukturen zu versehen“, sagt Gachot. „Aber mit dieser Lasermethode kann man innerhalb von 40 Sekunden die Strukturierung für alle Steckkontakte eines ganzen Autos durchführen – für Zusatzkosten von 21 Cent pro Auto.“

Freilich ist die Entwicklung von Mikro- und Nanostrukturen für Steckverbindungen nicht nur für die Automobilindustrie interessant. Die neuen Erkenntnisse lassen sich auf eine Vielzahl technischer Bereiche anwenden – von Alltagsgeräten bis zu Flugzeugturbinen. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Eine Frage der Lage

Presseinformation der LMU München vom 13.11.2017

Wie LMU-Physiker zeigen, lassen sich die lichtemittierenden und photokatalytischen Eigenschaften winziger Kohlenstoff-Nanokügelchen durch exakte Positionierung von Stickstoffatomen präzise einstellen.

Kohlenstoffkügelchen mit Durchmessern von wenigen Nanometern – sogenannte C-Dots – besitzen ungewöhnliche optische Eigenschaften, die sie für eine Reihe von technologischen Anwendungen, von der solaren Energieumwandlung bis hin zur medizinischen Bildgebung, hochinteressant machen. Darüber hinaus haben C-Dots im Vergleich zu ähnlichen Materialien den Vorteil, dass sie stabil und einfach herzustellen sind und keine toxischen Schwermetalle enthalten. Ob bestimmte C-Dots die für die Bildgebung relevante Lichtemission zeigen oder eher die für die Energieumwandlung wichtigen photokatalytischen Eigenschaften besitzen, hängt von ihrer chemischen Zusammensetzung und ihrer komplexen inneren Struktur ab. Die zugrundeliegenden Mechanismen sind bisher allerdings schlecht verstanden. LMU-Physiker um Dr. Jacek Stolarczyk haben diese Zusammenhänge untersucht und zeigen, dass die Eigenschaften der C-Dots durch chemische Modifikationen auf einfache Weise beeinflusst werden können. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Communications.

„Bisher wurden C-Dots typischerweise vor allem mithilfe des Trial-and-Error-Prinzips optimiert“, sagt Stolarczyk. „Um dies zu verbessern, ist ein genaueres Verständnis der Mechanismen essenziell, auf denen die optischen Eigenschaften der C-Dots beruhen.“ Die Wissenschaftler führten ihre Studie im Rahmen des interdisziplinären Projekts „Solar Technologies Go Hybrid“ (SolTEch) durch, das vom Freistaat Bayern großzügig gefördert wird. „Ziel von SolTech ist es, innovative Konzepte für die Umwandlung von Solarenergie insbesondere in nicht-fossile Brennstoffe zu erforschen – und zwar idealerweise mithilfe von reichlich vorhandenen und ungiftigen Materialien“, erklärt Professor Jochen Feldmann, der Leiter des SolTech-Projekts. C-Dots sind für derartige Anwendungen ideal geeignet.

Die Nanokügelchen bestehen aus verschiedenen polyzyklischen Kohlenwasserstoffverbindungen, deren komplexes Zusammenspiel ihre optischen Eigenschaften bestimmt. Für ihre Studie stellten die Wissenschaftler C-Dots her, indem sie ein Gemisch aus Zitronensäure und einem stickstoffhaltigen verzweigten Polymer mit Mikrowellen bestrahlten. Dabei variierten sie die Konzentration des Polymers, sodass unterschiedliche Mengen an Stickstoff in die Nanokügelchen eingebaut wurden. Insbesondere die Art, wie der Stickstoff eingebaut wurde, variierte je nachdem, wie viel Stickstoff zur Verfügung stand.

„Unsere Untersuchungen zeigten, dass die chemische Umgebung der eingebauten Stickstoffatome die Eigenschaften der C-Dots entscheidend beeinflusst“, sagt Dr. Santanu Bhattacharyya, der Erstautor der Veröffentlichung und Alexander-von-Humboldt Fellow am Lehrstuhl von Jochen Feldmann. Der Einbau in den inneren Bereichen graphenartiger Strukturen, wie er bei mittleren Polymerkonzentrationen gefunden wurde, führte zu Nanokügelchen, die bei entsprechender Anregung hauptsächlich Fluoreszenz im blauen Spektralbereich zeigen. Dagegen führte der Einbau an Randpositionen, wie er für sehr hohe und sehr niedrige Polymermengen auftrat, zur Unterdrückung der Lichtemission und stattdessen zu effektiver photokatalytischer Reduktion von Wasser zu Wasserstoff. Durch kleine Variationen der Syntheseprozedur können diese Eigenschaften also fein gesteuert werden. Die Wissenschaftler gehen davon aus, dass ihre neuen Erkenntnisse die Einsatzmöglichkeiten von C-Dots als fluoreszierende Lichtquelle oder für Anwendungen in der Energieumwandlung voranbringen werden.

Publikation:
Nature Communications 2017

Externer Link: www.uni-muenchen.de

Forscher entwerfen Datenbus für Quantencomputer

Medieninformation der Universität Innsbruck vom 06.11.2017

Die Quantenwelt ist sehr fragil. Fehlerkorrekturcodes helfen, Quanteninformation vor Störungen zu schützen. Innsbrucker Quantenphysiker haben nun ein Verfahren entwickelt, mit dem unterschiedlich kodierte Bauteile wie Prozessor und Speicher miteinander verbunden werden können. Mit der in der Fachzeitschrift Nature Communications präsentierten Methode kann ein Datenbus für Quantencomputer konstruiert werden.

Quantencomputer werden in Zukunft Rechenaufgaben bewältigen, an denen herkömmliche Computer scheitern. Weil Objekte in der Quantenwelt aber sehr sensibel auf Störungen reagieren, sind der Umsetzung heute noch Grenzen gesetzt. Obwohl die Systeme mit hohem Aufwand gegenüber Umwelteinflüssen abgeschirmt werden, können bisher im Labor nur kleine Protoypen für Quantencomputer gebaut werden. Die Fehleranfälligkeit lässt sich reduzieren, indem die Quanteninformation nicht in einem einzelnen Quantenteilchen gespeichert, sondern in einer größeren Anzahl an Quantenobjekten kodiert wird. Diese logischen Quantenbits sind gegenüber Störungen unempfindlicher. In den vergangenen Jahren haben Theoretiker viele verschiedene Fehlerkorrekturcodes entwickelt und diese für unterschiedliche Aufgaben optimiert. Physiker Hendrik Poulsen Nautrup und Hans Briegel vom Institut für Theoretische Physik der Universität Innsbruck und Nicolai Friis, nun am Institut für Quantenoptik und Quanteninformation in Wien, haben ein Verfahren gefunden, mit dem Quanteninformation zwischen unterschiedlichen, kodierten Systemen ausgetauscht werden kann.

Schnittstelle zwischen Prozessor und Speicher

Wie klassische Rechner kann auch der Quantencomputer der Zukunft aus unterschiedlichen Bauteilen bestehen. Schon heute existieren im Labor erste Quantenprozessoren und Quantenspeicher. Für sie können unterschiedliche Verfahren eingesetzt werden, um logische Quantenbits zu kodieren: für Quantenprozessoren zum Beispiel sogenannte „Color“ Codes und für Quantenspeicher „Surface“ Codes. „Damit diese beiden Systeme quantenmechanisch miteinander sprechen können, müssen sie verschränkt werden“, sagt Doktorand Hendrik Poulsen Nautrup. „Wir haben ein Verfahren entwickelt, mit dem unterschiedlich kodierte Quantensysteme verbunden werden können.“ Dabei handelt es sich um lokale Eingriffe an einzelnen Elementen des kodierten Quantenbits. Die Wissenschaftler sprechen auch von „Gitterchirurgie“, mit der Systeme wie ein Quantenspeicher und ein Prozessor verschränkt werden können. Nachdem die beiden Systeme vorübergehend miteinander „vernäht“ wurden, kann die Quanteninformation vom Prozessor in den Speicher oder umgekehrt geladen werden. „Ähnlich wie ein Datenbus im klassischen Computer, kann diese Methode verwendet werden, um die Bauteile eines Quantencomputers miteinander zu verbinden“, erläutert Poulsen Nautrup.

Das neu entwickelte Verfahren soll demnächst im Labor umgesetzt werden und stellt einen weiteren Schritt auf dem Weg zu einem universellen Quantencomputer dar. Die Arbeit entstand im Rahmen des Doktoratskolleg Atoms, Light, and Molecules an der Universität Innsbruck und wurde vom österreichischen Wissenschaftsfonds und der Templeton World Charity Foundation finanziell unterstützt.

Publikation:
Fault-tolerant interface between quantum memories and quantum processors. Hendrik Poulsen Nautrup, Nicolai Friis, and Hans J. Briegel. Nature Communications 2017 DOI: 10.1038/s41467-017-01418-2

Externer Link: www.uibk.ac.at

Im Auge des Betrachters

Pressemitteilung der Hochschule Coburg vom 07.11.2017

Mithilfe neuer Entwicklungen lassen sich Smartphones und Co. bedienen, ohne sie berühren zu müssen. Gesteuert werden könnten sie über einfache Handgesten.

Forscher der Hochschule Coburg haben untersucht, ob sich die Reflektionen im menschlichen Auge nutzen lassen, um diese Art der Bedienung zu ermöglichen. Und tatsächlich: Schaut ein Nutzer auf sein Smartphone oder Tablet spiegelt sich in seinen Augen die Umgebung um ihn herum. Bewegt er nun die Hände innerhalb dieser Umgebung, erkennt das Gerät diese Bewegung und kann die entsprechenden Befehle umsetzen.

Benötigt wird dafür nur die normale Frontkamera des Geräts. „Das muss also keine langfristige Zukunftsvision sein, sondern könnte schon mit der heutigen Generation von Smartphones umgesetzt werden“, erklärt Prof. Dr. Jens Grubert. Der Professor für Mensch-Maschine-Interaktion im Internet der Dinge erforscht Techniken, die die Bedienung von mobilen Endgeräten erleichtern können.

Diese Erkenntnisse zur Interaktion mit Mobilgeräten mittels Augenreflektionen stellten er und sein Mitarbeiter Daniel Schneider auf den international Konferenzen IEEE International Symposium on Mixed and Augmented Reality (IEEE ISMAR) in Nantes (Frankreich) und auf der ACM International Conference on Interactive Surfaces and Spaces (ACM ISS) in Brighton (England) vor.

Externer Link: www.hs-coburg.de

„Fingerabdruck“ aus Licht ermöglicht Nerven-Stimulation

Presseaussendung der JKU Linz vom 27.10.2017

ForscherInnen der Johannes Kepler Universität Linz haben ein neues Verfahren entwickelt, das die Stimulation von Nervenzellen mittels Lichtfeld ermöglicht. Das Projekt wurde nun im renommierten Journal „Nature Scientific Reports“ der Fachwelt präsentiert.

Bereits 2016 stellte das Team um Univ.-Prof. Oliver Bimber (Institut für Computergrafik) ein Verfahren zur volumetrischen Ausleuchtung von mikroskopischen Proben vor. Dabei werden, mithilfe eines speziellen Lichtfeld-Mikroskops, Lichtstrahlen zu einem dreidimensionalen Beleuchtungsmuster innerhalb der Probe gebündelt.

Einsatz in der Medizin

Einsatzgebiet dieser Technik ist die Optogenetik, in der neuronale Zellen durch gezielte Beleuchtung stimuliert werden. Optogenetische Stimulation wurde von anderen ForscherInnen bereits erfolgreich am Gehirn bzw. an Nervenzellen von Tieren wie Mäusen, Fischen, Fliegen und Würmern demonstriert. Ziel ist es, bestimmte Verhaltensmuster in Versuchsobjekten auszulösen oder zu unterdrücken.

Voraussetzung der bis dato aktuellen Beleuchtungsverfahren war die exakte Position der Probenelemente. Position und Größe einzelner Neuronen mussten vorab ermittelt werden. Eine genaue Bestimmung konnte zudem äußerst schwierig sein bzw. war in manchen Fällen überhaupt unmöglich.

Keine Rekonstruktion nötig

Das nun an der JKU entwickelte Verfahren kommt völlig ohne die dreidimensionale Struktur der Probe aus. Die Technik macht sich eine besondere Eigenschaft von Nervenzellen zunutze: Jedes stimulierte Neuron erzeugt einen eindeutigen „Lichtfeld-Fingerabdruck“. Im neuen Verfahren wird die Probe, bestehend aus mehreren Neuronen, mit speziellen Mustern beleuchtet. Die sich überlagernden „Fingerabdrücke“ werden danach durch ein mathematisches Verfahren getrennt. Damit können anschließend neue Beleuchtungsmuster berechnet werden, die dann selektiv einzelne Neuronen stimulieren.

Der große Vorteil: Durch die spezielle Abtastung sind eine 3D-Rekonstruktion der Probe oder die Kalibrierung der optischen Elemente des Mikroskops nicht mehr notwendig. (Tobias Prietzel)

Externer Link: www.jku.at