Perowskit-Schichten genau beleuchtet

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 23.02.2021

Effiziente Materialien für Solarzellen der Zukunft – Neues Modell zur Bestimmung der Photolumineszenz-Quantenausbeute

Perowskit-Halbleiter gelten als vielversprechende Materialien für Solarzellen der nächsten Generation. Wie gut geeignet ein Halbleiter für die Anwendung in der Photovoltaik ist, lässt sich unter anderem an der sogenannten Photolumineszenz-Quantenausbeute erkennen. Forschende des Karlsruher Instituts für Technologie (KIT) haben ein neues Modell entwickelt, mit dem sich die Photolumineszenz-Quantenausbeute von Perowskit-Schichten erstmals exakt bestimmen lässt. Darüber berichten sie in der Zeitschrift Matter. (DOI: 10.1016/j.matt.2021.01.019)

Photovoltaik trägt wesentlich zu einer nachhaltigen Energieversorgung bei. Entscheidend für den Wirkungsgrad von Solarzellen, die Lichtenergie direkt in elektrische Energie umwandeln, ist das eingesetzte Material. Metall-Halid-Perowskite gelten als besonders vielversprechende Materialien für Solarzellen der nächsten Generation. Mit diesen Halbleitern, die ihren Namen der speziellen Perowskit-Kristallstruktur verdanken, ist in den vergangenen Jahren eine deutliche Effizienzsteigerung gelungen: Perowskit-Solarzellen haben inzwischen einen Wirkungsgrad von bis zu 25,5 Prozent erreicht – nicht mehr weit entfernt von dem der marktdominierenden Silizium-Solarzellen. Zudem sind die für Perowskit-Solarzellen benötigten Ausgangsmaterialien reichlich vorhanden, die Solarzellen lassen sich einfach und günstig herstellen und vielseitig einsetzen. Der bei Perowskit-Solarzellen theoretisch erreichbare Wirkungsgrad liegt bei ca. 30,5 Prozent.

Um diesem Wirkungsgrad nahezukommen, muss die optoelektronische Qualität der Perowskit-Halbleiter weiter steigen. Grundsätzlich gilt, dass für die Photovoltaik geeignete Materialien Licht nicht nur absorbieren, sondern auch effizient wieder emittieren sollen – ein als Photolumineszenz bezeichneter Prozess. Die zugehörige Messgröße, genannt Photolumineszenz-Quantenausbeute, ist damit hervorragend geeignet, die Qualität der Perowskit-Halbleiter zu bestimmen. Forschende am Institut für Mikrostrukturtechnik (IMT) und am Lichttechnischen Institut (LTI) des KIT haben nun gemeinsam mit Wissenschaftlerinnen und Wissenschaftlern des Centre for Advanced Materials (CAM) an der Universität Heidelberg sowie der Technischen Universität Dresden ein neues Modell entwickelt, mit dem sich die Photolumineszenz-Quantenausbeute von Perowskit-Schichten erstmals zuverlässig und exakt bestimmen lässt. Über ihre Ergebnisse berichten sie aktuell in der Zeitschrift Matter.

Materialien bergen mehr Optimierungspotenzial als angenommen

„Unser Modell erlaubt, die Photolumineszenz-Quantenausbeute unter Sonneneinstrahlungsbedingungen exakter als bisher zu ermitteln“, erklärt Dr. Paul Faßl vom IMT des KIT. „Dabei kommt es auf das Photonen-Recycling an, das heißt auf den Anteil der vom Perowskit emittierten Photonen, der innerhalb der dünnen Schichten reabsorbiert und wieder reemittiert wird.“ Die Forschenden wandten ihr Modell auf Methylammoniumbleitriiodid (CH3NH3PbI3) an, einem der Perowskite mit der höchsten Photolumineszenz-Quantenausbeute. Diese wurde bisher auf rund 90 Prozent geschätzt, beträgt aber nach den Modellberechnungen ca. 78 Prozent. Wie die Wissenschaftlerinnen und Wissenschaftler erläutern, berücksichtigten die bisherigen Schätzungen den Effekt von Lichtstreuung nicht angemessen und unterschätzten daher die Wahrscheinlichkeit, dass Photonen – die Quanten der Lichtenergie – aus der Schicht entweichen, bevor sie reabsorbiert werden. „Unsere Ergebnisse zeigen, dass das Potenzial für die Optimierung dieser Materialien deutlich höher ist als bisher angenommen“, sagt Dr. Ulrich W. Paetzold, Leiter der Gruppe Advanced Optics and Materials for Next Generation Photovoltaics am IMT des KIT. Das Forschungsteam stellt eine Open-Source-Anwendung bereit, mit der sich die Photolumineszenz-Quantenausbeute verschiedener Perowskit-Materialien anhand ihres Modells berechnen lässt. (or)

Originalpublikation:
Paul Fassl, Vincent Lami, Felix J. Berger, Lukas M. Falk, Jana Zaumseil, Bryce S. Richards, Ian A. Howard, Yana Vaynzof, Ulrich W. Paetzold: Revealing the internal luminescence quantum efficiency of perovskite films via accurate quantification of photon recycling. Matter. Cell Press, 2021. DOI: 10.1016/j.matt.2021.01.019.

Externer Link: www.kit.edu

Forscherteam findet Zusammenhang zwischen Zellstoffwechsel und Zellteilung

Pressemitteilung der Universität des Saarlandes vom 16.02.2021

Viele biologische Abläufe unterliegen rhythmischen Veränderungen. Bekannte Beispiele hierfür sind etwa der sogennante zirkadiale Rhythmus, eine „innere Uhr“ mit etwa 24-stündiger Periode, oder der etwas kürzere, ultradiane Rhythmus. Oft ist die Zellteilung mit diesem Rhythmus gekoppelt. Biologen haben nun herausgefunden, dass dieser Rhythmus und dessen Kopplung mit der Zellteilung eng mit Wasserstoffperoxid zusammenhängt. Die Studie wurde im Fachjournal Nature Chemical Biology veröffentlicht.

Die Abläufe in Lebewesen folgen einer fein orchestrierten Choreographie bis hin auf molekulare Ebene. Von großer Bedeutung für diese Abläufe im Körper sind auch streng vorgegebene Rhythmen, denen bestimmte Kreisläufe folgen. So spielt zum Beispiel der rund 24 Stunden andauernde zirkadiane Zyklus, eine Art „innere Uhr“, für Stoffwechsel- und Zellteilungsmechanismen in den Zellen eine wichtige Rolle.

Wissenschaftlerinnen und Wissenschaftler aus Saarbrücken und Kaiserslautern haben nun einen ähnlichen Zyklus, den etwas kürzeren ultradianen Zyklus der Bäckerhefe genauer unter die Lupe genommen. Unter Federführung von Bruce Morgan, Professor für Biochemie an der Universität des Saarlandes, haben die Fachleute untersucht, was im Modellorganismus Bäckerhefe geschieht, wenn man den Stoffwechsel der Zellen gezielt verändert. Bisher bekannt war, dass die Stoffwechselabläufe und die Zellteilungs-Zyklen in gesunden Zellen oft synchron nach genau solchen Rhythmen ablaufen. Bisher unbeantwortet war, ob rhythmische Änderungen im Stoffwechsel Grund oder Folge von Zellteilung sind.

Mithilfe von neuartigen fluoreszierenden Sensoren haben die Wissenschaftler rhythmische Änderungen des Wasserstoffperoxid-Spiegels beobachten können. Wasserstoffperoxid (H2O2) war lange Zeit eher bekannt dafür, dass es Zellen stresst und schädigt. „Wir haben dazu das Protein Peroxiredoxin und seine Reaktion mit untersucht sowie die Folgen auf den Zellteilungs-Zyklus der Zellen“, erklärt Bruce Morgan. Denn das Protein Peroxiredoxin reagiert sehr empfindlich auf Wasserstoffperoxid und bietet sich deshalb besonders gut an, um den komplexen Mechanismus der „inneren Uhr“ der Zellen weiter zu verstehen.

Die Frage, ob eine Änderung dieses Rhythmus Grund oder Folge einer Stoffwechseländerung ist, konnten die Wissenschaftlerinnen und Wissenschaftler nun offenbar beantworten: „Wir konnten feststellen, dass die Kopplung zwischen Stoffwechsel und Zellteilung unterbrochen wird, wenn wir das Peroxiredoxin im Bäckerhefe inaktivieren“, erläutert Biochemiker Morgan. Die Zellteilung läuft dann entkoppelt vom Stoffwechsel der Zellen ab. Darüber hinaus konnten sie präzise steuern, wann die Zellen in den Zellteilungszyklus ein- und austreten, indem sie die Stoffwechselzyklen präzise gesteuert haben.

Diese grundlegenden Erkenntnisse könnten wichtig sein, um die unkontrollierte Zellteilung in Tumorzellen besser zu verstehen. Es ist bekannt, dass die Zellteilung in Krebszellen häufig von der circadianen Uhr entkoppelt ist. Es wird in Zukunft äußerst interessant sein, zu untersuchen, ob eine gestörte H2O2-Regulierung daran beteiligt ist.

Originalveröffentlichung:
Amponsah, P.S., Yahya, G., Zimmermann, J. et al. Peroxiredoxins couple metabolism and cell division in an ultradian cycle. Nat Chem Biol (2021).

Externer Link: www.uni-saarland.de

Origami mit DNA

Presseaussendung der TU Wien vom 01.02.2021

Wichtige Fragen über das Immunsystem konnte ein Team der TU Wien beantworten – mit einem Trick, der an kompliziertes Papierfalten erinnert.

T-Zellen sind ein wichtiger Bestandteil unseres Immunsystems: An ihrer Oberfläche befinden sich Rezeptoren, mit denen die T-Zellen ganz bestimmte Antigene erkennen können. Wenn auf diese Weise ein Eindringling detektiert wird, kommt es zu einer Immunantwort. Unklar war bisher, was beim Erkennen von Antigenen genau passiert: Welche Rolle spielt die Zahl der vorhandenen Antigene, und wie hängt die Reaktion der T-Zelle von deren räumlicher Anordnung ab?

Diese Effekte spielen sich im Nanometerbereich ab – auf der Größenskala von Molekülen, weit unterhalb von dem, was man mit gewöhnlichen Mikroskopen sehen kann. Um all das zu untersuchen, braucht man winzige Werkzeuge. Daher kam an der TU Wien nun eine ungewöhnliche Methode zum Einsatz: DNA-Moleküle wurden auf ausgeklügelte Weise zusammengefaltet, ähnlich wie bei der Papierfaltkunst Origami. Auf diese Weise entsteht nicht bloß eine Doppelhelix, sondern ein rechteckiges „molekulares Floß“, das über eine Zellmembran treibt und als Werkzeug für neuartige Messungen dient. Die Ergebnisse wurden nun im Fachjournal PNAS publiziert.

Künstliche Zellmembranen

„T-Zellen reagieren auf Antigene, die von bestimmten Zellen an ihrer Oberfläche präsentiert werden. Um diese Interaktion zwischen den T-Zellen und den antigen-präsentierenden Zellen im Detail untersuchen zu können, ersetzen wir die antigen-präsentierende Zelle durch eine künstliche Zellmembran. So können wir die Zahl und Art der Antigene selbst festlegen“, sagt Prof. Eva Sevcsik, Biophysikerin am Institut für Angewandte Physik der TU Wien.

„Es gab einige Hinweise, dass der räumliche Abstand zwischen den Antigenen bei der T-Zell-Aktivierung eine wichtige Rolle spielt“, sagt Joschka Hellmeier, der im Rahmen seiner Dissertation an diesem Projekt forschte. „Allerdings ist es schwierig, diese Effekte genau zu untersuchen: Der Abstand zwischen den einzelnen Antigenen lässt sich nicht so einfach bestimmen.“

Die Zellmembran ist keine feste Struktur, in der jedes Molekül an seinem Platz bleibt. Die Antigene in der Zellmembran können sich frei bewegen, ähnlich wie aufblasbares Plastikspielzeug, das auf der Wasseroberfläche treibt. „Daher wollten wir eine Methode etablieren, mit der man bestimmte Abstände zwischen den Antigenen exakt einstellen kann, um dann die Reaktion der T-Zellen zu untersuchen“, erklärt Eva Sevcsik.

DNA-Origami

Dazu bedienten sich die Forschenden eines Phänomens, das die Natur selbst nutzt: Die DNA, der Träger der Erbinformation in unserem Körper, besteht aus zwei genau zueinander passenden Einzelsträngen, die sich ohne äußeres Zutun zu einer DNA Doppelhelix zusammenfügen.

Diese Eigenschaft macht man sich in der DNA Nanotechnologie zunutze: „Durch cleveres Design von Einzelsträngen, die nur abschnittsweise zueinander passen, kann man mehrere Doppelhelices miteinander verbinden und so komplizierte Strukturen herstellen“, erklärt Eva Sevcsik. „Diese Technik bezeichnet man als DNA-Origami – statt Papier falten wir eben DNA-Stränge.“

Auf diese Weise stellte das Forschungsteam rechteckige DNA-Flächen her, an denen man ein Antigen fixieren kann. Dieses DNA-Rechteck wird auf die künstliche Membran gesetzt, und es bewegt sich dort wie ein Floß.

„Dadurch können wir aber garantieren, dass die Antigene einander nicht beliebig nahekommen“, sagt Joschka Hellmeier. „Selbst wenn zwei dieser DNA-Flöße dicht aneinanderrücken, bleibt immer noch ein Mindestabstand zwischen den Antigenen, wenn auf jedem DNA-Floß nur ein einziges Antigen fixiert ist.“ Zusätzlich kann man DNA-Floß-Varianten herstellen, die jeweils gleich zwei Antigene an Bord haben und so untersuchen, wie die T-Zellen auf unterschiedliche Antigen-Abstände reagieren.

Altes Rätsel gelöst

Auf diese Weise konnte man die teilweise widersprüchlichen Beobachtungen erklären, die in den vergangenen Jahren im Bereich der molekularen Immunologie für Verwirrung sorgten: Manchmal schienen mehrere benachbarte Antigene nötig zu sein, um T-Zellen zu aktivieren, in anderen Fällen genügte ein einziges. „Mithilfe unserer DNA-Origami-Technik konnten wir die Rolle von molekularen Abständen für die T-Zellaktivierung aufklären“, sagt Eva Sevcsik.

Für natürlich vorkommende Antigene spielt der Abstand keine Rolle – sie agieren „solo“ und sind so sehr effizient in der T-Zellaktivierung. In der Forschung verwendet man allerdings statt Antigenen oft künstliche T-Zell-Aktivatoren, die besonders stark an den T-Zell-Rezeptor binden – und in diesem Fall sind mindestens zwei benachbarte Moleküle nötig, um die T-Zelle zu aktivieren. „Das ist ein wichtiges Ergebnis“, sagt Eva Sevcsik. „Wir konnten erstmals zeigen, dass es hier zwei unterschiedliche Mechanismen gibt, das wird für künftige Studien und die Entwicklung von T-Zell-basierten Immuntherapien von Krebserkrankungen eine wichtige Rolle spielen.“ (Florian Aigner)

Originalpublikation:
J. Hellmeier et al., DNA origami demonstrate the unique stimulatory power of single pMHCs as T cell antigens, PNAS 2021

Externer Link: www.tuwien.at

Virtual-Reality-App hilft gegen Höhenangst

Medienmitteilung der Universität Basel vom 10.02.2021

Forschende der Universität Basel haben eine Virtual Reality App für Smartphones entwickelt, um Höhenangst zu reduzieren. Die Wirksamkeit stellten sie nun mit einer klinischen Studie unter Beweis. Höhenängstliche Probanden, die mit der App insgesamt vier Stunden zuhause trainierten, konnten anschliessend mit einer realen Höhensituation besser umgehen.

Höhenangst ist ein weit verbreitetes Phänomen. Bei ungefähr fünf Prozent der Bevölkerung ist das Unwohlsein in Höhensituationen derart ausgeprägt, dass sie darunter leiden. Betroffene nehmen jedoch selten vorhandene Behandlungsmöglichkeiten wie eine Expositionstherapie in Anspruch, bei der sie sich unter professioneller Anleitung in die gefürchtete Situation begeben. Einerseits setzen sich Betroffene nur widerwillig ihrer Höhenangst aus, anderseits spielen Schwierigkeiten eine Rolle, passende Höhensituationen im therapeutischen Setting zu schaffen.

Das interdisziplinäre Forschungsteam um Prof. Dr. Dominique de Quervain von der Universität Basel hat deshalb «Easyheights» entwickelt – eine Virtual-Reality-App, mit der sich eine Exposition auf dem Smartphone simulieren lässt. Die App arbeitet mit 360°-Bildern von realen Orten, welche die Forschenden mit einer Drohne aufgenommen haben. Betroffene können die App auf ihrem eigenen Smartphone nutzen, das sie hierfür in ein Virtual-Reality-Headset einsetzen.

Schrittweise höher

Im virtuellen Erlebnis steht die Nutzerin oder der Nutzer auf einer Plattform, die sich zunächst einen Meter über dem Boden befindet. Nach einer Gewöhnungszeit wird die Plattform automatisch weiter angehoben. Auf diese Weise steigt die wahrgenommene Position über dem Boden langsam aber stetig an, ohne dass das Angstniveau zunimmt.

Die Wirksamkeit dieses Ansatzes konnte das Forschungsteam in einer randomisierten kontrollierten Studie nachweisen, deren Ergebnisse im Fachjournal «NPJ Digital Medicine» erschienen sind. 50 Studienteilnehmende mit Höhenangst absolvierten entweder ein insgesamt vierstündiges Höhentraining (einmal 60 Minuten und sechsmal 30 Minuten innerhalb von zwei Wochen) in der virtuellen Realität oder wurden der Kontrollgruppe ohne solches Training zugewiesen.

Vor und nach der Trainingsphase – beziehungsweise der gleichen Zeitspanne ohne Training – bestiegen die Probanden den Aussichtsturm Uetliberg bei Zürich so weit, wie es ihre Höhenangst zuliess. Dabei protokollierten die Forschenden die erreichte Höhe sowie die Stärke der empfundenen Angst auf jeder Etage des Aussichtsturms. Letztlich konnten die Forschenden die Ergebnisse von 22 Probanden mit «Easyheights»-Training und 25 aus der Kontrollgruppe auswerten.

Die Gruppe, die mit der App trainiert hatte, zeigte weniger Angst auf dem Turm und war in der Lage, höher in Richtung Spitze zu klettern als vor dem Training. In der Kontrollgruppe fand keine positive Veränderung statt. Die Wirksamkeit des Höhentrainings mit «Easyheights» erwies sich als vergleichbar mit der einer klassischen Expositionstherapie.

Therapie im heimischen Wohnzimmer

Der Einsatz von virtueller Realität zur Behandlung von Höhenangst wird bereits seit mehr als zwei Jahrzehnten erforscht. «Neu ist jedoch, dass Smartphones die virtuellen Szenarien erzeugen und diese sonst technisch aufwendige Therapieform damit deutlich zugänglicher wird», erklärt Dr. Dorothée Bentz, Erstautorin der Studie.

Die Studienergebnisse legen nahe, dass die wiederholte Nutzung einer virtuellen Expositionstherapie auf dem Smartphone das Verhalten und das subjektive Befinden in Höhensituationen deutlich verbessern kann. Betroffene mit leichten Formen der Höhenangst können sich die kostenlose Applikation in Kürze aus gängigen App-Stores herunterladen und in Eigenregie üben. Bei Betroffenen mit einer ausgeprägten Höhenangst empfehlen die Forschenden jedoch, die App nur in Begleitung einer Fachperson zu nutzen.

Die aktuelle Studie gehört zu einer Reihe von Projekten der transfakultären Forschungsplattform Molecular and Cognitive Neurosciences, welche von Prof. Dr. Andreas Papassotiropoulos und Prof. Dr. Dominique de Quervain geleitet wird. Sie verfolgen das Ziel, die Behandlung von psychischen Störungen durch den Einsatz neuer Technologien zu verbessern und diese breit verfügbar zu machen.

Originalpublikation:
Dorothée Bentz, Nan Wang, Merle K Ibach, Nathalie S Schicktanz, Anja Zimmer, Andreas Papassotiropoulos, Dominique JF de Quervain
Effectiveness of a stand-alone, smartphone-based virtual reality exposure app to reduce fear of heights in real-life: a randomized trial
NPJ Digital Medicine (2021), doi: 10.1038/s41746-021-00387-7

Externer Link: www.unibas.ch

Uni-Start-up identifiziert Corona-Mutationen

Medienmitteilung der Universität Innsbruck vom 26.01.2021

Neue Verfahren ermöglichen schnelleren Nachweis von Virusmutationen

Das Spin-off Sinsoma hat gemeinsam mit Forscher*innen der Universität Innsbruck zwei neue Verfahren entwickelt, die Varianten des Coronavirus schneller und effizienter identifizieren können als bisherige Methoden. Mit einem selbst entwickelten PCR-Test lässt sich die britische Coronavirus-Variante in nur drei Stunden ausschließen. Durch ein effizientes Sequenzierungsverfahren können die britische sowie weitere Varianten innerhalb von 48 Stunden nachgewiesen werden.

Bereits im vergangenen März, kurz nach Auftreten der ersten Covid-19-Fälle in Österreich, hat das Spin-off-Unternehmen Sinsoma gemeinsam mit den Instituten für Zoologie und Mikrobiologie der Universität Innsbruck ein Testverfahren zum Nachweis von SARS-CoV-2, dem Erreger von Covid-19, entwickelt, das seit Mitte Mai 2020 erfolgreich im Einsatz ist. Den Wissenschaftler*innen ist es nun gelungen, ein weiteres PCR-Verfahren zu etablieren, das bei positiven PCR-Tests innerhalb kürzester Zeit das Vorliegen der britische Coronavirus-Variante mit sehr hoher Wahrscheinlichkeit ausschließen kann. „Dank der abgewandelten Methode unseres PCR-Verfahrens können wir die britische Variante in nur drei Stunden praktisch ausschließen. Das ist durch den Nachweis einer bestimmten Veränderung im für das Coronavirus charakteristischen Spike-Protein möglich. Diese Mutation kommt in über 99 Prozent aller Fälle der britischen Coronanvirus-Variante vor, weshalb wir bei ihrem Fehlen sehr sicher sagen können, dass es sich nicht um diese Variante des Coronavirus handelt“, erklärt Martina Gruber aus dem Entwicklungsteam von Sinsoma. „Unsere Methode unterscheidet sich auch dadurch, dass wir ein eindeutiges Ergebnis erhalten, bei dem wir wissen, ob es sich entweder um die mutierte oder die ursprüngliche Variante des Coronavirus handelt. Vergleichbare Verfahren liefern bislang ein negatives Ergebnis im Fall einer Mutation, wodurch sie fehleranfälliger sind“, ergänzt Corinna Wallinger, eine Mitgründerin von Sinsoma.

Effizientes Sequenzierungsverfahren

Neben dieser Vorselektion zum Ausschluss der britischen Variante haben die Wissenschaftler*innen auch eine effiziente Vorgangsweise zur Sequenzierung des Coronavirus-Erbguts entwickelt, mit der sie neben der britischen Variante auch weitere, wie etwa die brasilianische oder südafrikanische Variante, in nur 48 Stunden nachweisen können. Während bisherige Sequenzierungsverfahren meist das gesamte Genom des Coronavirus untersuchen, fokussieren die Forscher*innen bei Sinsoma sich nur auf einen kleinen Teil. „Auf der Suche nach möglichen Virus-Mutationen untersuchen wir gezielt einen bestimmten Abschnitt des Virus Genoms, der eine Identifizierung der oben genannten Varianten erlaubt“, erklärt Martina Gruber. „Das erspart uns einiges an Zeit“, so Gruber weiter. Während viele Labore auf vorgefertigte Testverfahren zur Detektion von Virusmutationen angewiesen sind, profitiert das Team von Sinsoma um Michael Traugott, Professor am Institut für Zoologie der Universität Innsbruck, von einer langjährigen Forschungspraxis. Sie sind Spezialist*innen für die DNA/RNA-Spuren-Analyse und können dadurch rasch maßgeschneiderte und effiziente Lösungen entwickeln und schnell auf Markterfordernisse reagieren. Die entwickelten Verfahren stehen ab sofort zur Verfügung und sollen helfen, das Auftreten und die weitere Verbreitung von Coronavirus-Mutationen frühzeitig zu erkennen.

Externer Link: www.uibk.ac.at