Zug um Zug – neues Prüfverfahren entwickelt

Presseaussendung der TU Wien vom 16.05.2022

Forschende der TU Wien haben ein Zugprüfverfahren entwickelt, das für die mechanische Zugprüfung von Mikro- und Nanofasern geeignet ist. Das Besondere: Die Proben können reversibel an den Kraftsensor an- und abgekoppelt werden.

Möchte man die Steifigkeit oder Zugfestigkeit von Fasern im Nano- bis Mikrobereich testen, ist dies meist sehr aufwändig, denn die Proben müssen an beiden Seiten mit Klebstoff fixiert werden. Einerseits kostet die Trocknung des Klebstoffes Zeit, andererseits lässt sich der Sensor, an den die Faser angeklebt wird, nicht wiederverwenden.

Den TU-Forschern Mathis Nalbach, Philipp Thurner und Georg Schitter ist es nun gelungen, ein Testsystem zu entwickeln, das ebendiese Hürden überwindet. Das Funktionsprinzip ist wie folgt: Eine magnetische Kugel, die an die Nanofaser angebracht wird, lässt sich mit einer magnetischen Pinzette aufgreifen. So kann die Kugel in die an einen Kraftsensor angebrachten Gabel eingelegt und dadurch an den Sensor angekoppelt werden. Da sich die magnetische Kugel mittels der magnetischen Pinzette auch wieder aus der Gabel entfernen lässt, kann man umgehend eine weitere Nanofaser aufgreifen. Dadurch wird der Probendurchsatz signifikant erhöht. Das zum Patent angemeldete Zugprüfgerät „NanoTens“ stellten die Forschenden jüngst in der Zeitschrift „Review of Scientific Instruments“ vor.

An die Realbedingungen angepasst

Während man mit dem Rasterkraftmikroskop die mechanischen Eigenschaften einer Faser durch eine Nano-Eindringprüfung untersuchen kann, ermöglicht der NanoTens die Materialprüfung unter der für Fasern bedeutsameren mechanischen Belastung, der Zugbelastung. Philipp Thurner vom Forschungsbereich Biomechanik erklärt dies wie folgt: „Man kann sich die Vorrichtung wie einen mikroskopischen Gabelstapler vorstellen. Die magnetische Kugel, die an die Faser angeklebt wird, wird in die Gabel des Gabelstaplers eingelegt. Durch eine Auf- bzw. Abbewegung der Gabel kann man die Faser nun unter Zugbelastung testen. Diese Belastungsart ist vor allem für biologische Fasern wie z. B. Kollagenfibrillen relevant. Diese werden physiologisch hauptsächlich unter Zug belastet, und daher sind die mechanischen Eigenschaften unter eben dieser Belastung besonders relevant.“

Die Biomechaniker Nalbach und Thurner untersuchen zumeist natürliche Fasern wie Kollagen. Da deren mechanischen Eigenschaften stark von äußeren Bedingungen abhängen, ist es wichtig, diese auch bei der Zugprüfung zu berücksichtigen. „Dies gelingt uns, da mit dem NanoTens Zugversuche in unterschiedlichen Medien durchgeführt werden können. Eine trockene Kollagenfaser ist beispielsweise viel spröder und steifer als eine feuchte. Auch nimmt ihr Durchmesser signifikant ab, wenn sie ausgetrocknet wird“, sagt Mathis Nalbach, Erstautor der Studie.

Qualität und Quantität steigen

Den Forschenden gelingt es mit ihrer Methode nicht nur, physiologische Bedingungen zu simulieren, auch gewinnen die mit NanoTens generierten Ergebnisse an Validität. Denn um aussagekräftige Ergebnisse über biologische Materialien wie Kollagenfibrillen zu erhalten, bedarf es einer Vielzahl von Messungen. „Herkömmliche Verfahren erlauben uns nur, ein bis zwei Proben pro Woche zu untersuchen. Das macht es quasi unmöglich, statistisch aussagekräftige Studien durchzuführen“, schildert Nalbach das Problem. Philipp Thurner ergänzt: „Die neue Methode erlaubt ein schnelles An- und Abkoppeln der Fasern. Dadurch – und da der Sensor wiederverwendet wird – können wir nicht nur die Anzahl der Zugversuche auf bis zu 50 Messungen pro Woche, sondern auch die Präzision der Messung erhöhen.“

Die Zugversuche können – je nach Wahl – über einen großen Kraftbereich und zudem über eine Regelung auch kraftkontrolliert durchgeführt werden. Dies ist wichtig, da Zugprüfverfahren normalerweise davon ausgehen, dass das Material linear elastische Eigenschaften hat. Bei biologischen Geweben, wie beispielsweise Kollagenfibrillen, ist das jedoch nicht der Fall: Sie sind viskoelastisch. Durch kraftkontrollierte Zugversuche wird die Untersuchung eben dieser Viskoelastizität ermöglicht.

Von der Erfindung zum Produkt

NanoTens wurde bereits von der TU Wien international zum Patent angemeldet. Auch die Machbarkeit der Methode konnte nachgewiesen werden (TRL 6), wie in der Studie von Nalbach et al. nachzulesen ist. „Der nächste Schritt wäre, sich mit industriellen Partnern zusammenzuschließen. Wir hoffen, mit Hilfe des Forschungs- und Transfersupports eine_n Lizenznehmer_in zu finden. Wir sind an Kooperationen mit der Industrie zu diesem Thema interessiert“, sagt Mathis Nalbach. NanoTens ist dabei so konstruiert, dass es sich generell in jedes Eindrucksmessgerät oder auch Rasterkraftmikroskop integrieren lässt. Neben der Materialwissenschaft findet die Zugprüfung auch – unter anderem – in den Biowissenschaften, der Halbleitertechnik sowie der Elektronik Anwendung. (Sarah Link)

Externer Link: www.tuwien.at

Neuer Drohnentyp erlaubt weltweit erstes Echtzeit-Tracking von Personen in dichter Bewaldung

Pressemeldung der JKU Linz vom 25.04.2022

AOS ist ein spezielles Bildgebungsverfahren, bei dem bei Drohnen-Luftaufnahmen die Verdeckung (z.B. ein Blätterdach im Wald) in Echtzeit weggerechnet werden kann. Nun wurde das System neuerlich verbessert. Beim AOS werden aus der Luft (z.B. mittels Kamera-Drohne) mehrere Einzelaufnahmen von unterschiedlichen Positionen aufgenommen und rechnerisch so kombiniert, dass verdeckende Bewaldung aus dem Bildmaterial von der Software entfernt wird.

Potenzielle Anwendungen findet AOS z.B. in der Wildbeobachtungen, für Such- und Rettungseinsätze von vermissten Personen in Waldgebieten oder für das Aufspüren von Waldbränden und Glutnestern. Bisher gab es ein Problem: Es war nur für unbewegte Objekte verwendbar. Sowohl vermisste Menschen als auch Wild neigen natürlich dazu, sich zu bewegen. Bisher war es mit keiner Technologie möglich, solche bewegliche Objekte zu erkennen oder gar zu verfolgen – auch mit AOS nicht, da der sequentielle Aufnahmeprozess der Einzelbilder, die zum Wegrechnen des Waldes nötig waren, deutlich mehr Zeit in Anspruch nahm als die Bewegung einer Person, Tiers, oder Fahrzeug. Vor allem sich schnell bewegende Objekte gehen – ähnlich wie bei Langzeitbelichtungen – in den Ergebnisbildern durch Bewegungsunschärfe unter.

Ein neuer Drohnenprototyp, der in Zusammenarbeit der JKU Institute für Computergrafik (Leitung: Prof. Oliver Bimber) und Konstruktiven Leichtbau (Leitung: Prof. Martin Schagerl) entwickelt wurde, stellt nun weltweit die allererste Möglichkeit dar, bewegte Objekte unter dichter Bewaldung zu finden und in Echtzeit zu verfolgen. Auch wenn es seit einigen Jahren internationale Anstrengungen in diese Richtung gibt, galt „through-foilage tracking“ unter realistischen Bedingungen bisher als weitgehend ungelöstes Problem.

Der Clou des neue Drohnenprototyps ist ein fast 10 Meter langer Ausleger aus Carbon, der mit 10 Kameras bestückt ist, die gleichzeitig Bilder aufnehmen. Die rechnerische Kombination dieser Aufnahmen über die große Synthetische Apertur des Auslegers ermöglicht das Wegrechnen der Verdeckung in der Geschwindigkeit der Kameraaufnahmen – also in Echtzeit. In ersten Experimenten erkennt ein Farbanomalie-Detektor Personen und verfolgt diese durch den Wald.

Erste Ergebnisse wurden nun im Science Partner Journal of Remote Sensing veröffentlicht, und zeigen nicht nur, dass „through-foilage tracking“ realistisch möglich ist, sondern auch, dass Anomaliedetektion, die häufig auch bei der automatisierten Bildsuche für Such- und Rettungsaktionen Anwendung findet, durch AOS stark verbessert wird. (Christian Savoy)

Externer Link: www.jku.at

Detektion von Wasserstoff durch Glasfasersensoren

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.04.2022

Wasserstoff spielt in der deutschen Energie- und Klimapolitik eine zentrale Rolle. Kommt er zum Einsatz, sind Sicherheitsmaßnahmen von entscheidender Bedeutung. Denn im Unterschied zu anderen gasförmigen oder flüssigen Energieträgern besteht bei Wasserstoff neben einer erhöhten Brandgefahr durch Leckagen unter bestimmten Bedingungen auch Explosionsgefahr. Um die Sicherheit im Umgang mit Wasserstoff noch weiter zu erhöhen, arbeiten Forschende am Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI an Glasfaser-basierten Sensoren zu dessen Detektion, die herkömmlichen Sensoren in vielerlei Hinsicht überlegen sind.

Um die gesetzten Klimaziele zu erreichen und die globale Erwärmung einzudämmen, müssen alle Staaten den Anteil an fossilen Energieträgern schnellstmöglich auf ein Minimum reduzieren. Als nachhaltige Alternative wird verstärkt auf Wasserstofftechnologien gesetzt – vor allem im Produktions- und Mobilitätssektor. Überall wo mit Wasserstoff gearbeitet wird, er gelagert, transportiert und weitergeleitet wird, dürfen entsprechende Sicherheitsvorkehrungen nicht fehlen. Denn obwohl Wasserstoff nicht giftig ist, er weniger wiegt als Luft und somit nach oben steigt, kann es zu gefährlichen Situationen kommen: Überschreitet nämlich die Wasserstoffkonzentration in der Luft einen Schwellenwert von vier Prozent, was bei ausreichend Druck in einem Wasserstofftank oder bei mangelnder Belüftung eines Raumes schnell erreicht werden kann, genügt eine kleine Zündquelle, ein einzelner Funken, um eine Explosion auszulösen.

Klein, gut integrierbar und ohne immanentes Sicherheitsrisiko

Dies gilt es vorausschauend zu verhindern und Dr. Günter Flachenecker, Senior Scientist am Fraunhofer HHI, weiß, wie. An der Außenstelle Abteilung Faseroptische Sensorsysteme des Fraunhofer HHI in Goslar forscht der promovierte Physiker zusammen mit seinem Team an Möglichkeiten zur Wasserstoffdetektion mithilfe von Sensoren aus Glasfasern: »Herkömmliche Sicherheitssensoren, die zur Erfassung von Wasserstoff derzeit kommerziell verfügbar sind – das sind in der Regel katalytische Wärmetönungssensoren oder elektrochemische Zellen –, benötigen eine elektrische Stromversorgung. Beide Varianten könnten so, wenn das Gerät oder die elektrischen Zuleitungen einen Defekt aufweisen, im schlimmsten Fall selbst als Zündquelle die Explosion auslösen, die sie eigentlich verhindern sollten«, erklärt Flachenecker. »Bei unseren Glasfasersensoren besteht diese Gefahr nicht. Gleichzeitig müssen sie nicht aufwändig verkabelt werden, sind klein und lassen sich gut in verschiedenste Strukturen der zu überwachenden Anlage oder des Fahrzeugs integrieren.«

Lichtleitende Glasfasern sind aufgrund ihres geringen Durchmessers von etwa einem Viertel Millimeter und ihrer Robustheit geradezu prädestiniert für sensorische Applikationen in einer sicherheitsrelevanten Umgebung. Damit eine Glasfaser zum Wasserstoffsensor wird, muss sie an verschiedenen Stellen modifiziert werden. Hierfür werden zunächst mit einem Laser bestimmte Strukturen in den Glasfaserkern eingeprägt, sodass ein sogenanntes Faser-Bragg-Gitter entsteht – eine periodische Brechungsindexmodulation, die dafür sorgt, dass Licht bei einer bestimmten Wellenlänge reflektiert wird.

Dass die Glasfaser nun speziell auf Wasserstoff reagiert, wird erreicht, indem rund um den Glasfasermantel eine spezifische funktionelle Beschichtung aufgetragen wird: »Wir arbeiten mit katalytischen Schichten, zum Beispiel Palladium oder Palladiumlegierungen«, so Flachenecker. »Palladium hat die Eigenschaft, dass es Wasserstoff aufsaugt, ähnlich wie ein Schwamm. Sobald die beiden Stoffe aufeinandertreffen, zerfällt der Wasserstoff in seine atomaren Fragmente und die freigesetzten Wasserstoffatome dringen in das Kristallgerüst des Palladiums ein. Dies führt zu einer Dehnung in der Glasfaser, die sich über das eingebaute Faser-Bragg-Gitter augenblicklich als Veränderung in den rückgemeldeten Lichtimpulsen messen lässt. Sobald die Wasserstoffkonzentration in der Luft dann wieder abnimmt, löst sich der Wasserstoff auch wieder aus dem Palladium.« Die Beschichtung trägt dadurch also keinen Schaden davon und der Sensor kann wiederverwendet werden. Gleichzeitig funktioniere der beschriebene Vorgang nur, weil Wasserstoffatome sehr klein sind, betont Flachenecker. Andere Stoffe können auf diesem Wege nicht in die Palladiumschicht eindringen.

Potenzial in vielen verschiedenen Anwendungskontexten

Doch das ist nicht die einzige Methode, die von den Forschenden getestet wurde. So ist eine Wasserstoffdetektion auch mit Glasfasern möglich, deren Mantel weggeätzt wurde, oder mit einer sehr dünnen Schicht aus Nanopartikeln, die auf den Glasfasermantel aufgetragen werden. »Das ist eine große Spielwiese und es gibt einiges, was wir noch ausprobieren wollen«, sagt Flachenecker. »Entscheidend ist es für uns, Möglichkeiten zur Wasserstoffdetektion zu finden, die schnell genug sind, um Unfälle zu verhindern, und die zuverlässig im benötigten Empfindlichkeitsbereich reagieren. Und da sind wir aktuell auf einem sehr guten Weg.«

In der Praxis könnten die neuen Glasfasersensoren zum Beispiel integraler Bestanteil von Fahrzeugen mit Wasserstoffantrieb werden und zur Überwachung von Wasserstofftankstellen, Autowerkstätten oder Elektrolyseuren eingesetzt werden. Auch der Aufbau eines größeren Sensornetzwerks, das eine Wasserstoff-Infrastruktur an vielen Stellen gleichzeitig überwacht, ließe sich leicht umsetzen. Die Elektronik für die Messdatenaufnahme, also zum Beispiel ein Spektrometer für die optische Auswertung der Glasfasersensoren, kann räumlich beliebig weit entfernt an einem sicheren Ort installiert sein. Wird eine bestimmte Wasserstoffkonzentration überschritten und der Sensor schlägt an, so wird das je nach konkretem Anwendungsfall angebundene Alarmmanagement ausgelöst und spezifische Maßnahmen, zum Beispiel ein akustisches Warnsignal, das Schließen von Ventilen oder das Öffnen von Fenstern können in Sekundenschnelle eingeleitet werden.

Das derzeitige Forschungsprojekt unter der Leitung von Günter Flachenecker wird vom Bundesministerium für Wirtschaft und Klimaschutz gefördert und findet in Kooperation mit einem lokalen Brandschutzunternehmen statt. Es startete vor zwei Jahren und endet nach einem derzeit noch nicht abgeschlossenen Praxistest, bei dem die Glasfasersensoren in LKWs eingebaut werden, im Sommer. Anschließend ist ein Folgeprojekt geplant, in dem die neuen Sensoren noch ausführlicher getestet und weitere vorbereitende Schritte in Richtung Zertifizierung und Kommerzialisierung unternommen werden sollen. Das Ziel ist klar: Ein noch sichereres und unfallfreies Arbeiten mit Wasserstoff.

Externer Link: www.fraunhofer.de

Ein neues Modell für mikromechanische Sensoren

Presseaussendung der TU Wien vom 17.01.2022

Die Eigenschaften von Flüssigkeiten oder Gasen lassen sich mit winzigen schwingenden Plättchen messen. An der TU Wien entwickelte man dafür nun eine Berechnungsmethode.

Mikromechanische Sensoren verbinden zwei verschiedene Welten miteinander: Auf der einen Seite die Welt der Elektronik und der digitalen Signale, auf der anderen Seite die physisch greifbarere Welt der Mechanik. Den Zusammenhang zwischen diesen Gebieten zu beschreiben ist oft nicht einfach, und so fehlte bisher ein umfassendes Modell, mit dem man winzige Platten oder Balken exakt beschreiben kann, die durch elektrische Effekte zum Schwingen gebracht werden. An der TU Wien gelang es nun, ein solches Modell zu entwickeln – in hervorragender Übereinstimmung mit Messergebnissen. Das ermöglicht nun winzige Sensoren, mit denen man die Eigenschaften von Flüssigkeiten oder Gasen präzise und einfach messen kann.

Flüssigkeiten charakterisieren mit schwingenden Mikro-Platten

Das Schwingungsverhalten der Mikrostrukturen hängt ganz wesentlich von zwei Faktoren ab: Erstens von ihrer Geometrie und zweitens von ihrer Umgebung: Befindet sich die Mikrostruktur etwa in einer zähen Flüssigkeit, dann wird die Schwingung gedämpft und die Schwingungsfrequenz verändert sich.

„Auf diese Weise kann man Veränderungen der Umgebung sehr schnell detektieren“, erklärt Ulrich Schmid. „So könnte man zum Beispiel durch einen mikroelektromechanischen Sensor in einem Ölbehälter überwachen, ob das Öl noch immer die passende Viskosität hat, oder ob es durch Alterung seine Eigenschaften verändert hat und ausgetauscht werden muss.“

Wenn man allerdings das Schwingungsverhalten dieser winzigen Strukturen berechnen möchte, stößt man auf eine Reihe von Schwierigkeiten: Zwar gibt es Rechenmodelle, um die Schwingung von kleinen Balken oder Platten zu beschreiben, allerdings muss diese Schwingung rechnerisch mit dem Verhalten der umgebenden Flüssigkeit oder des umgebenden Gases gekoppelt werden – man muss also Schwingungsmechanik und Fluiddynamik miteinander verbinden.

„Das ist numerisch aufwändig, auch deshalb, weil man es hier mit unterschiedlichen Größenskalen zu tun hat“, sagt André Gesing. „Der Durchmesser der schwingenden Strukturen liegt im Milli- bis Mikrometerbereich, die Amplitude der Schwingungen hingegen im Nanometerbereich. Dieser Unterschied von mehr als drei Größenordnungen ist der Grund, dass herkömmliche Finite-Elemente-Methoden, wie man sie in vielen anderen Forschungsbereichen für die Analyse von Schwingungen einsetzt, hier schnell an ihre Grenzen kommen.“

Neues Modell: vielseitig und präzise

Nun ist es André Gesing, Daniel Platz und Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien gelungen, eine Methode zu entwickeln, die all diese Schwierigkeiten meistert, und noch dazu viel umfassender ist als bisherige Modelle: „Damit kann man Mikrostrukturen unterschiedlicher Form und Größe analysieren, mit unterschiedlich starken Dämpfungen“, sagt Daniel Platz. So lässt sich nun auch vorhersagen, welche Strukturen für welchen Anwendungsfall am vielversprechendsten sind. Experimente zeigen: Das neue Rechenmodell stimmt mit den gemessenen Daten ausgezeichnet überein.

Wichtig sind diese Erkenntnisse nicht nur für die Herstellung von Sensoren, sondern auch für die Rasterkraftmikroskopie: Dort wird die Schwingung extrem feiner Nadeln gemessen um Information über eine Oberfläche zu erhalten, die Punkt für Punkt abgebildet werden soll. Das neue Modell soll nun auch helfen, neue Sensoren für die Rasterkraftmikroskopie zu entwickeln, insbesondere für die Untersuchung von biologischen Proben in Flüssigkeiten. Ein weiteres Anwendungsfeld ist die vorausschauende Wartung (Predictive Maintenance) von hydraulischen Komponenten. Mikrosensoren können direkt in solche Komponenten integriert werden und so kontinuierlich Daten zur Ölqualität liefern. Auf diese Weise kann man Systemausfälle frühzeitig verhindern und die wartungsbedingte Standzeit minimieren.

„Diese grundlegenden Erkenntnisse, die wir nun gewonnen haben, sind die Basis für die weiteren Ziele, die wir nun verfolgen: Wir wollen nun mikromechanische Sensoren verbessern und ihr Anwendungspotenzial vergrößern“, sagt Daniel Platz. Dabei wird es nicht nur um die Interaktion zwischen der Struktur und den umgebenden Fluiden gehen, sondern auch um die Frage, wie man andere Energieverlustmechanismen auf ein Minimum reduzieren kann. „Auf Basis dieser Untersuchungen wollen wir mikromechanische Sensoren mit sehr hohen Gütefaktoren entwickeln, wie sie zum Beispiel in der Quantensensorik verwendet werden“, sagt Daniel Platz. (Florian Aigner)

Originalpublikation:
A. Gesing, D. Platz, U. Schmid, A numerical method to determine the displacement spectrum of micro-plates in viscous fluids, Computers&Structures, 260, 106716 (2022).

Externer Link: www.tuwien.at

Magnetische Janus-Partikel verbessern Biomolekül-Transport in Miniatur-Laboren

Pressemitteilung der Universität Kassel vom 16.12.2021

Experimente von Forschenden der Uni Kassel könnten die Diagnostik von Krankheiten mithilfe von Lab-on-a-Chip-Technologien verbessern: Für den Transport von zu untersuchenden Biomolekülen (Analyte) zwischen den verschiedenen Reaktions- und Analysekammern haben sie sogenannte Janus-Partikel gezielt gesteuert.

In Lab-on-a-Chip-Systemen laufen komplexe chemische Prozesse auf geringstem Raum ab. Analog zu großen Apparaturen in Laboren befinden sich auf nur plastikkartengroßen Kunststoffsubstraten Kanäle, Pumpen, Ventile und Messkammern von der Dicke eines menschlichen Haares. Eine Probe, z.B. ein Tropfen Blut, läuft darin vorbei an Sensoren, die die chemischen Bestandteile der Probe analysieren. Die Sensoren übersetzen diese wiederum in elektrische Signale zur Auswertung. Solche Systeme werden bereits zur Diagnostik eingesetzt, beispielsweise in Blutzuckermessgeräten oder Schwangerschaftstests. Die Technik bietet aber noch viel Entwicklungspotenzial.

Das Fachgebiet funktionale dünne Schichten und Physik mit Synchrotronstrahlung der Universität Kassel (Prof. Dr. Arno Ehresmann) erforscht seit etwa zehn Jahren Technologien, die spezifische Biomoleküle (z.B. nachzuweisende Analyte) in Lab-on-a-Chip-Systemen mithilfe von magnetischen Mikro- und Nanoteilchen gezielt durch die Reaktions- und Analysekammern transportieren können. Sie haben jetzt eine Methode entwickelt, die die Kontrolle über diese Bewegungen deutlich verbessert und den Transport beschleunigt. Ihre Ergebnisse haben sie nun im Fachjournal Scientific Reports veröffentlicht.

Die Experimentalphysiker haben sogenannte Janus-Partikel hergestellt, die zwei Seiten mit unterschiedlichen physikalischen Eigenschaften besitzen: Siliziumdioxid-Kugeln von drei Mikrometern Durchmesser mit einer magnetischen Metall-Kappe, die die Kugel zur Hälfte bedeckt. „An der einen Seite der Kugel binden zum Beispiel Moleküle aus der Probe, die analysiert werden sollen, und die magnetische Metallkappe auf der anderen Seite dient zur Bewegungskontrolle durch externe Magnetfelder“, erklärt Erstautor Rico Huhnstock.

Die zweite Komponente ist ein magnetisches Dünnschichtsubstrat, welches in unterschiedlich magnetisierte Streifensegmente mikrostrukturiert wurde und damit die zur Bewegung der Partikel notwendigen mikroskaligen Magnetfelder erzeugt. Indem die Forschenden nun äußere Magnetfelder anlegen und deren Richtungen periodisch ändern, bewegen sie die sich daran ausrichtenden magnetischen Janus-Partikel in einer wässrigen Lösung über das Substrat. Die Anordnung bietet darüber hinaus die Möglichkeit, die Partikel gezielt räumlich rotieren zu lassen. „Durch die Rotationsbewegung der Kugeln wird die Haftwahrscheinlichkeit der Analyte an den Partikeln deutlich erhöht. Das ist besonders dann ein großer Vorteil, wenn die Analyte in nur sehr geringer Konzentration vorliegen. Gleichzeitig können wir die Partikel wiederum durch Rotation über bestimmten Analysekammern genauer ausrichten“, beschreibt Huhnstock. So lassen sich die zu untersuchenden Moleküle deutlich sensitiver nachweisen.

Darüber hinaus benötigt diese Methode weniger Strom als bisherige Systeme und ermöglicht eine schnellere Durchsatzgeschwindigkeit der Proben. Die Janus-Partikel bewegen sich mit bis zu 200 Mikrometer pro Sekunde, etwa zehnmal schneller als in gängigen Systemen. Das ergab die Auswertung der Partikelbewegung durch Informatiker des Fachgebiets für Intelligente Eingebettete Systeme (Prof. Dr. Bernhard Sick) an der Uni Kassel. „Mit unseren Ergebnissen aus der Grundlagenforschung lassen sich langfristig Schnellnachweise mit Lab-on-a-Chip-Technologien realisieren, die kostensparend Biomoleküle zum Beispiel als Nachweis für bestimmte Krankheiten detektieren können, ohne auf Technik und Personal in einem Labor angewiesen zu sein“, so Huhnstock.

Publikation:
Huhnstock, R., Reginka, M., Tomita, A. et al. Translatory and rotatory motion of exchange-bias capped Janus particles controlled by dynamic magnetic field landscapes. Sci Rep 11, 21794 (2021).

Externer Link: www.uni-kassel.de