Ultrakalte Mini-Tornados

Medieninformation der Universität Innsbruck vom 31.10.2022

Quanten-Wirbel klarer Hinweis auf Suprafluidität

Ein Team von Quantenphysikern um die dreifache ERC-Preisträgerin Francesca Ferlaino hat eine neue Methode entwickelt, mit der Wirbel in dipolaren Quantengasen beobachtet werden können. Diese Quanten-Wirbel gelten als eindeutiger Hinweis für Suprafluidität, das reibungsfreie Strömen eines Quantengases, und wurden nun erstmals an der Universität Innsbruck in dipolaren Gasen experimentell nachgewiesen.

Wirbel sind in der Natur allgegenwärtig: Durch Rühren lassen sich Wasserstrudel erzeugen. Wird die Atmosphäre aufgewühlt, können gewaltige Tornados entstehen. So verhält es sich auch in der Quantenwelt, nur dass dort viele identische Wirbel gleichzeitig entstehen – der Wirbel ist quantisiert. In vielen Quantengasen konnten solche quantisierten Wirbel bereits nachgewiesen werden. „Das ist deshalb interessant, weil solche Wirbel ein klarer Hinweis für das reibungsfreie Strömen eines Quantengases – die sogenannte Suprafluidität – sind“, sagt Francesca Ferlaino vom Institut für Experimentalphysik der Universität Innsbruck und dem Institut für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften.

Neue Methode erzeugt Quantenwirbel

Ferlaino forscht mit ihrem Team an Quantengasen aus stark magnetischen Elementen. Für solche dipolaren Quantengase, in denen die Atome stark wechselwirken, konnten die Quanten-Wirbel bisher noch nicht nachgewiesen werden. Die Wissenschaftler haben nun eine neue Methode entwickelt: „Wir nutzen die Richtungsabhängigkeit unseres Quantengases aus Dysprosium, dessen Atome sich wie viele kleine Magneten verhalten, um das Gas umzurühren“, erklärt Manfred Mark aus dem Team von Francesca Ferlaino. Dazu legen die Wissenschaftler ein Magnetfeld so an ihr Quantengas an, dass dieses zunächst runde, pfannkuchenartig geformte Gas aufgrund von Magnetostriktion elliptisch verformt wird. Diese ebenso einfache wie wirkungsvolle Idee geht auf einen theoretischen Vorschlag zurück, den ein Theorieteam der Universität Newcastle unter der Leitung von Nick Parker, dem auch Thomas Bland, der Mitautor der aktuellen Arbeit, angehörte, vor einigen Jahren gemacht hatte. „Indem wir das Magnetfeld drehen, können wir das Quantengas rotieren lassen“, erklärt Lauritz Klaus, Erstautor der Arbeit. „Wenn es sich schnell genug dreht, dann bilden sich im Quantengas kleine Wirbel aus. So versucht das Gas, den Drehimpuls auszugleichen.“ Bei ausreichend hoher Rotationsgeschwindigkeit bilden sich entlang des Magnetfelds auffällige Streifen mit Wirbeln. Diese sind ein besonderes Charakteristikum dipolarer Quantengase und wurden nun an der Universität Innsbruck zum ersten Mal beobachtet.

Nächste Ziel Suprasolidität

Die nun in der Fachzeitschrift Nature Physics präsentierte neue Methode soll in Zukunft zur Untersuchung der Suprafluidität in suprasoliden Zuständen eingesetzt werden, in denen Quantenmaterie gleichzeitig fest und flüssig ist. „Es ist immer noch eine große offene Frage, inwieweit die neu entdeckten suprasoliden Zustände tatsächlich supraflüssig sind, und diese Frage ist heute noch sehr wenig erforscht.“

Diese Arbeit entstand in Zusammenarbeit mit Giacomo Lamporesi von der Universität Trient und dem Theoretiker Russell Bisset von der Universität Innsbruck und wurde unter anderem vom Europäischen Forschungsrat ERC, dem österreichischen Wissenschaftsfonds FWF und der Österreichischen Akademie der Wissenschaften ÖAW finanziell unterstützt.

Originalpublikation:
Observation of vortices and vortex stripes in a dipolar condensate. Lauritz Klaus, Thomas Bland, Elena Poli, Claudia Politi, Giacomo Lamporesi, Eva Casotti, Russell N. Bisset, Manfred J. Mark, and Francesca Ferlaino. Nature Physics 2022

Externer Link: www.uibk.ac.at

Schnellere und effizientere Computerchips durch Germanium

Presseaussendung der TU Wien vom 08.11.2022

An der TU Wien gelang es, ein neuartiges Material aus Silizium und Germanium für die Chiptechnologie nutzbar zu machen. Das ermöglicht schnellere, effizientere Computer und neuartige Quantenbauelemente.

Unsere heutige Chiptechnologie basiert größtenteils auf Silizium. Nur in ganz bestimmten Bauelementen wird auch eine geringe Menge an Germanium beigemischt. Es gibt aber gute Gründe in Zukunft höhere Germaniumanteile zu verwenden: Der Verbindungshalbleiter Silizium-Germanium hat nämlich entscheidende Vorteile gegenüber der heutigen Silizium-Technologie, was Energieeffizienz und die erreichbaren Taktfrequenzen betrifft.

Das Hauptproblem dabei ist, auf technisch zuverlässige Weise Kontakte zwischen Metall und Halbleiter auf Nanoskala herzustellen. Das ist bei einem hohen Anteil an Germanium deutlich schwieriger als bei Silizium. An der TU Wien zeigte man nun aber zusammen mit Forschungsteams aus Linz und Thun (Schweiz), dass sich dieses Problem lösen lässt – mit Kontakten aus kristallinem Aluminium mit extrem hoher Qualität und einem ausgeklügelten Silizium-Germanium Schichtsystem. Dieses Zusammenspiel ermöglicht, in Abhängigkeit des Germaniumanteils im Silizium, unterschiedliche hochinteressante Kontakteigenschaften – speziell für optoelektronische- und Quantenbauelemente.

Das Problem mit dem Sauerstoff

„Jede Halbleiterschicht wird in konventionellen Verfahren automatisch verunreinigt, das lässt sich auf atomarer Ebene einfach nicht verhindern“, sagt Masiar Sistani vom Institut für Festkörperelektronik der TU Wien. In erster Linie sind es Sauerstoffatome, die sich sehr rasch an der Oberfläche der Materialien anlagern – an der Oberfläche entsteht eine Oxidschicht.

Bei Silizium ist das allerdings kein Problem: Silizium bildet nämlich immer genau die gleiche Art von Oxid aus. „Bei Germanium ist die Sache aber viel komplizierter“, erklärt Masiar Sistani. „In diesem Fall gibt es nämlich eine ganze Reihe unterschiedlicher Oxide, die sich bilden können. Das bedeutet aber, dass unterschiedliche nanoelektronische Bauteile eine stark unterschiedliche Oberflächenzusammensetzung aufweisen und damit auch unterschiedliche elektronische Eigenschaften haben können.“

Wenn man nun einen metallischen Kontakt mit diesen Bauteilen verbinden möchte, hat man ein Problem: Auch, wenn man sich sehr bemüht, all diese Bauteile exakt auf die gleiche Weise herzustellen, ergeben sich trotzdem zwangsläufig massive Unterschiede – und dass macht das Material für den Einsatz in der Halbleiterindustrie komplex in der Handhabung.

„Die Reproduzierbarkeit ist ein großes Problem“, sagt Prof. Walter Weber, der Leiter des Instituts für Festkörperelektronik, TU Wien. „Wenn man germaniumreiches Silizium-Germanium verwendet, kann man sich nicht darauf verlassen, dass der elektronische Bauteil, nachdem man ihn mit Kontakten versehen hat, wirklich die Kennlinien aufweist, die man braucht.“ Daher wird dieses Material in der Chipproduktion nur begrenzt eingesetzt.

Das ist schade, denn Silizium-Germanium hätte entscheidende Vorteile: „Die Ladungsträgerkonzentration ist höher, speziell positive Ladungsträger, die sogenannten Löcher, können sich in diesem Material viel effizienter bewegen als in Silizium. Das Material würde daher viel höhere Taktfrequenzen bei gesteigerter Energieeffizienz erlauben als unsere heutigen Silizium-Chips“, sagt Lukas Wind, Doktorand in der Forschungsgruppe von Walter Weber.

Die „perfekte“ Schnittstelle

Nun konnte das Forschungsteam allerdings zeigen, wie sich das Problem lösen lässt: Man fand eine Methode, auf atomarer Skala perfekte Schnittstellen zwischen Aluminiumkontakten und Silizium-Germanium-Bauteilen zu erzeugen. In einem ersten Schritt wird ein Schichtsystem hergestellt, mit einer dünnen Siliziumschicht und dem eigentlichen Material, aus dem die elektronischen Bauteile gemacht werden sollen – dem Silizium-Germanium.

Durch das kontrollierte Aufheizen der Struktur kann nun ein Kontakt zwischen dem Aluminium und dem Silizium hergestellt werden: Bei rund 500 Grad Celsius kommt es zu starker Diffusion: Die Atome können ihren Platz verlassen und zu wandern beginnen. Silizium und Germanium-Atome dringen relativ rasch in den Aluminiumkontakt ein, Aluminium füllt den freigewordenen Raum aus.

„Durch die Diffusionsdynamik in dem verwendeten Schichtsystem entsteht so eine Schnittstelle zwischen Aluminium und dem Silizium-Germanium mit einer extrem dünnen Silizium-Schicht dazwischen“, erklärt Masiar Sistani. Durch dieses Herstellungsverfahren haben Sauerstoffatome gar nicht die Gelegenheit, an diese atomar-scharfe und hochreine Schnittstelle heranzukommen.

„Unsere Experimente zeigen, dass diese Kontaktstellen auf verlässliche und gut reproduzierbare Weise hergestellt werden können“, sagt Walter Weber. „Die technologischen Systeme, die man dafür braucht, werden bereits heute in der Chipindustrie eingesetzt. Es handelt sich also nicht bloß um einen Laborversuch, sondern um ein Verfahren, das man relativ rasch in der Chipindustrie einsetzen könnte.“

Der entscheidende Vorteil des präsentierten Herstellungsverfahrens ist, dass unabhängig von der Silizium-Germaniumzusammensetzung hochqualitative Kontakte hergestellt werden können. „Wir sind davon überzeugt, dass die vorgestellten abrupten, robusten und zuverlässigen Metall-Halbleiter Kontakte für eine Vielzahl neuer nanoelektronischer, optoelektronischer und Quantenbauelementen hochinteressant sind“, sagt Walter Weber. (Florian Aigner)

Externer Link: www.tuwien.at

Simuliertes Gehirn-Modell erstmals zum Sehen gebracht

Presseaussendung der TU Graz vom 02.11.2022

Forscher der TU Graz haben erstmals auf einem detaillierten Modell des Gehirns der Maus die Funktion des Sehens nachgebildet. Bisher konnten Gehirn-Strukturen zwar modelliert werden, es war aber nicht möglich, gezielte Funktionen auszuführen.

„Das bahnbrechende an unserem neuesten Modell ist, dass wir unsere Gehirn-Simulation erstmals bestimmte Funktionen – in unserem Fall Sehen – ausführen lassen können“, erklärt TU Graz-Neuroinformatiker Wolfgang Maass, der gemeinsam mit seinen PostDocs Guozhang Chen und Franz Scherr gerade das wissenschaftliche Paper „A data-based large-scale model for primary isual cortex enables brain-like robust and versatile visual processing“ veröffentlicht hat. Als Ergebnis ihrer Arbeit erwarten sich die Forschenden nun eine neue wissenschaftliche Methode, die künftig in der Forschung zum Einsatz kommt.

Zentrale Funktion in künstlichen neuronalen Netzwerken

Die Sehfunktion haben die Forschenden deswegen als Forschungsgegenstand ausgewählt, weil sie eine der zentralen Funktionen künstlicher Intelligenz ist – etwa im autonomen Fahren oder der Bildverarbeitung müssen die Algorithmen die mittels Sensoren erfassten Daten über ihre Umgebung interpretieren und aus ihnen lernen. Die Arbeit des TU Graz-Teams baut auf jahrzehntelangen Studien des renommierten Allen Institute for Brain Science in Seattle auf, das sich wissenschaftlich unter anderem der Entschlüsselung des visuellen Cortex von Mäusen verschrieben hat. „Wir haben diese Daten in ein simuliertes Netzwerk von biologischen Neurone – also in ein Computer-Modell von einem Teil des Gehirns – übersetzt und konnten mit diesem biologischen Modell die Sehfunktion nachbilden“, so Maass. Das so simulierte neuronale Netzwerk kann die wichtigsten visuellen Aufgaben einer Maus erfüllen und ist gegenüber Störungen äußerst robust. Ein nächster Schritt wird nun sein, die Unterschiede zwischen der biologischen Sehfunktion der Simulation und der Sehfunktion von künstlichen neuronalen Netzwerken zu untersuchen.

Dass sich Forschende das Gehirn zum Vorbild nehmen, ist nicht neu, aber umso effektiver. Neuronale Netze des Gehirns sind nicht nur besonders leistungsfähig, sondern auch enorm energieeffizient. Neurone sind nicht ständig aktiv, sondern „feuern“ nur, wenn sie für eine Aufgabe gebraucht werden. Künstliche neuronale Netzwerke bilden dieses Vorgehen nach. Sie sind allerdings nur „gehirninspiriert“ und sowohl deren Neurone als auch die Architektur des Netzwerks sind ganz anders als im Gehirn. Daher sind biologische Simulations-Modelle wichtig, mit denen Forschende das Gehirn besser verstehen wollen. Diese Erkenntnisse wiederrum können aber in der Computertechnik eingesetzt werden, wie Wolfgang Maass anmerkt: „Wir starten gerade einen Pilotversuch mit dem Prozessorhersteller Intel und bauen unsere biologischen Modelle in seine neuromorphen Chips ein, um zu beobachten, ob sie dadurch wirklich energieeffizienter werden.“

Detailliertes Modell statt Approximation

Bisher wurden Funktionsweisen lediglich an kleinen Modellen – Approximationen des Gehirns mit geringer Detailtreue – nachgebildet. Dank großzügiger Rechenzeit an einem von Europas leistungsfähigsten Supercomputern in Jülich und Fortschritten im Chipdesign sowie der Software konnten die Grazer Forscher aber mit dem detaillierten biologischen Modell rechnen. „Wir haben gezeigt, dass dies mit dem heutigen Stand der Technik möglich ist und erwarten uns davon einen neuen Trend in der Forschung, der uns einen Schritt näher zum Verstehen des Gehirns bringt.“ (Birgit Baustädter)

Originalpublikation:
A data-based large-scale model for primary visual cortex enables brain-like robust and versatile visual processing
Chen Guozhang, Franz Scherr, Wolfgang Maass, TU Graz
Science Advances
DOI: 10.1126/sciadv.abq7592

Externer Link: www.tugraz.at

technologiewerte.de – MOOCblick November 2022

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Efficient HVAC Systems
Laure Itard (TU Delft)
Start: flexibel / Arbeitsaufwand: 28-42 Stunden

Externer Link: www.edx.org