technologiewerte.de – MOOCblick September 2023

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Technology Entrepreneurship: Lab to Market
Karim Lakhani (Harvard University) et al.
Start: flexibel / Arbeitsaufwand: 10-20 Stunden

Externer Link: www.edx.org

Sichere Tanks für Wasserstofffahrzeuge

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.09.2023

Wasserstoff ist ein Hoffnungsträger im Kontext der Energie- und Mobilitätswende. Doch das Gas ist auch hochexplosiv und es bedarf strenger Sicherheitsvorkehrungen, um Wasserstoff sicher zu verwenden. Aktuelle Brennstoffzellenfahrzeuge führen den Wasserstoff gasförmig in Drucktanks mit. Diese Kernelemente des H2-Antriebssystems müssen selbst bei maximalen Betriebsbelastungen sicher bleiben. Um Gefahrensituationen zu vermeiden, sind regelmäßige Wartungen der Hochdruck-Speichersysteme Pflicht. Doch die aktuell im Abstand von zwei Jahren vorgeschriebene Prüfung des Tanks ist nur eine äußerliche Sichtprüfung. Schäden im Innern des Tanks können mit dieser konventionellen Prüfmethode nicht detektiert werden. Im Verbundprojekt HyMon entwickeln Forschende des Fraunhofer-Instituts für Betriebsfestigkeit und Systemzuverlässigkeit LBF gemeinsam mit Partnern eine sensorbasierte On-Board-Strukturüberwachung, die eine dauerhafte Kontrolle der H2-Drucktanks ermöglichen und so eine hohes Sicherheitsniveau von Wasserstofffahrzeugen gewährleisten soll.

Wasserstoff wird derzeit gasförmig unter hohem Druck von bis zu 700 bar in Behältern aus Faserverbundwerkstoffen (FVK) gespeichert. Diese sind im Vergleich zu Metalltanks aufgrund ihrer geringen Masse für den Einsatz im Mobilitäts- und Transportsektor prädestiniert. Aus Sicherheitsgründen werden die H2-Drucktanks vor ihrem ersten Einsatz aufwendigen Prüfungen unterzogen, um einen sicheren Betrieb über die Lebensdauer zu gewährleisten. Darüber hinaus muss die Integrität des Behälters bei wiederkehrenden Belastungen durch Betankung und Entnahme des Wasserstoffs wie auch im Schadensfall (z. B. Auffahrunfall) sichergestellt sein. Die derzeit vorgeschriebenen Sichtprüfungen auf eine äußere Beschädigung des Tanks können dies nicht leisten. Alternativ kann die Schadensdetektion durch eine dauerhafte Überwachung – sogenanntes Structural Health Monitoring, kurz SHM – des Druckbehälters realisiert werden. Ein entsprechendes intelligentes System zur permanenten Zustandsüberwachung von Wasserstofftanks entwickeln Forschende des Fraunhofer LBF in Darmstadt in enger Zusammenarbeit mit Partnern im Projekt HyMon. Diese On-Board-Strukturüberwachung – bestehend aus geeigneter Sensorik und Auswerteelektronik – soll zum einen die Daten für den Service- und Reparaturfall liefern. »TÜV-Prüfer erhalten durch unsere Technologie beispielsweise nach einem Unfall objektive Informationen über die Belastungen des Tanks und können so objektiv entscheiden, ob dieser noch wiederverwendbar ist oder ausgetauscht werden muss«, sagt Johannes Käsgen, Wissenschaftler am Fraunhofer LBF. Zum anderen soll sie dabei unterstützen, die Wartungskosten zu senken und eine sichere Ausnutzung der Tanks über die gesamte Lebensdauer zu gewährleisten.

Schallemissions- und Dehnungssensoren detektieren Schäden im Tank

Im Fokus der Forschungsarbeiten stehen Schallemissionssensoren bzw. Acoustic-Emission-Sensoren. Reißt eine einzelne Kohlefaser im Drucktank, entsteht eine Schallwelle, die durch die Fasern läuft. Die Sensoren erfassen die hochfrequente Schallwelle und können so die Anzahl der gebrochenen Fasern ermitteln. »Durch Sonderlastfälle, beispielweise Auffahrunfälle, können die Tanks lokal beschädigt werden, wodurch innerhalb kürzester Zeit viele Fasern brechen«, erklärt Käsgen. »Die Messsignale werden durch eine Auswerteelektronik verarbeitet und informieren so über den Gesundheitszustand des Tanks.« Die erforderlichen Algorithmen und Methoden zur Detektion von Faserbrüchen werden am Fraunhofer LBF entwickelt. Diese umfassen beispielsweise die Frequenzanalysen der Schallwelle. »Sensoren am Tank nehmen die hochfrequenten Schallwellen im Falle eines Faserbruchs auf, die Algorithmen detektieren die Faserbrüche, die gezählt werden. Nimmt die Rate an Faserbrüchen plötzlich zu, so ist das ein Indiz, dass der Wasserstofftank am Ende seiner Nutzungszeit ist«, resümiert der Forscher den Ablauf. Die durchgängige On-Board-Strukturüberwachung garantiert ein erhöhtes Sicherheitsniveau von Wasserstofffahrzeugen, da mögliche Schäden auch bei kleinen Impacts – etwa durch das Aufsetzen auf einen Poller – und die Restlebensdauer des Tanks abgeschätzt werden kann. Durch die umfassende Qualitätssicherung lässt sich darüber hinaus ein unnötiger Austausch der Wasserstofftanks vermeiden.

Neben Acoustic-Emission-Sensoren werden auch faseroptische Dehnungssensoren in die Tanks integriert. Diese bestehen aus lichtleitenden Glasfasern, in die sogenannte Faser-Bragg-Gitter-Sensoren integriert sind. Die Glasfasern werden direkt bei der Herstellung in die FVK-Schicht des Tanks eingewickelt oder nachträglich auf die Oberfläche aufgebracht, um eine kontinuierliche oder periodische automatisierte Überwachung von Dehnungen rund um den Wasserstofftank zu ermöglichen. Anders als konventionelle Dehnungssensoren eignen sich diese Glasfasern aufgrund ihrer Robustheit gegenüber hohen Materialdehnungen und Belastungszyklen besonders für die Überwachung von kohlenstofffaserverstärkten Kunststoffen. Mit den Messdaten der Dehnungssensoren werden zum einen die Berechnungsmodelle der Drucktanks verifiziert und zum anderen Erkenntnisse darüber gewonnen, wie sich das Materialverhalten über die Lebensdauer des Tanks verändert, um hieraus Rückschlüsse auf den Ermüdungszustand des Materials zu ziehen.

Komplettsystem wird im Versuchsfahrzeug getestet

Im Prüfstand am Fraunhofer LBF werden zunächst anhand von sensorbestückten Kohlefaser-Flachproben verschiedene Arten von Schädigungen erzeugt – etwa Faserbrüche, Matrixbrüche oder Delaminationen – und mit den Sensoren die Schädigungssignale erfasst. Anschließend wird beurteilt, ob die Sensoren in der Lage sind, die Signale in ausreichender Qualität aufzuzeichnen, und ob die Algorithmen anhand der Signale die Schädigungsmechanismen richtig zuordnen können. Im nächsten Schritt wird das komplette Sensorsystem an dünnwandigen Modellbehältern und anschließend an Hochdruck-Wasserstofftanks überprüft, die unter Innendruck bis zum Versagen zyklisch beansprucht werden. Dabei untersuchen die Forscherteams wie viele Sensoren für die Strukturüberwachung erforderlich sind, an welchen Positionen und mit welchen Klebstoffen diese optimalerweise am Wasserstofftank angebracht werden müssen. Abschließend wird ein Versuchsfahrzeug mit Sensorik und On-Board-Strukturüberwachung ausgerüstet und durch die Kombination von virtuellem Crash und realem Prüfaufbau validiert. Ziel der Projektpartner ist es, das Komplettsystem als zukünftige serienmäßige Zustandsüberwachung zu ertüchtigen.

Externer Link: www.fraunhofer.de

Forscher entwickeln fermionischen Quantenprozessor

Medienmitteilung der Universität Innsbruck vom 23.08.2023

Wissenschaftler aus Österreich und den USA haben einen neuartigen Quantencomputer entwickelt, der fermionische Atome zur Simulation komplexer physikalischer Systeme verwendet. Der Prozessor verwendet neutrale Atome in optischen Pinzetten und ist in der Lage, fermionische Modelle auf effiziente Weise mit fermionischen Gattern zu simulieren. Das Team um Peter Zoller zeigt, wie der neue Quantenprozessor fermionische Modelle aus der Quantenchemie und Teilchenphysik effizient simulieren kann.

Fermionische Atome sind Teilchen, die dem Pauli-Prinzip gehorchen; zwei von ihnen können gleichzeitig nie denselben Quantenzustand einnehmen. Das macht sie ideal für die Simulation von Systemen, in denen fermionische Eigenschaften eine entscheidende Rolle spielen, wie etwa Moleküle, Supraleiter und Quark-Gluon-Plasmen. „In Quantencomputern, die auf Qubits basieren, müssen zusätzliche Ressourcen eingesetzt werden, um diese Eigenschaften zu simulieren, in der Regel in Form von weiteren Qubits oder umfangreicheren Quantenschaltkreisen“, erklärt Daniel Gonzalez Cuadra aus der Forschungsgruppe um Peter Zoller am Institut für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften (ÖAW) und am Institut für Theoretische Physik der Universität Innsbruck.

Quanteninformation in Fermionen speichern und verarbeiten

Ein fermionischer Quantenprozessor besteht aus einem fermionischen Register und einer Abfolge von fermionischen Quantengattern. „Das Register besteht aus einer Reihe von fermionischen Zuständen, die entweder leer oder von einem einzelnen Fermion besetzt sein können, und diese beiden Zustände bilden die lokale Einheit der Quanteninformation“, erläutert Daniel Gonzalez Cuadra. „Der Zustand des Systems, das wir simulieren wollen, z. B. ein aus vielen Elektronen bestehendes Molekül, wird im Allgemeinen eine Überlagerung vieler Besetzungsmuster sein, die direkt in dieses Register kodiert werden können.“ Diese Informationen werden dann in einem fermionischen Quantenschaltkreis verarbeitet, der beispielsweise die zeitliche Entwicklung eines Moleküls simulieren soll. Jede solche Operation kann in eine Folge von nur zwei Arten von fermionischen Gattern zerlegt werden, einem Tunnelgatter und einem Wechselwirkungsgatter.

Die Forscher schlagen vor, fermionische Atome in einer Anordnung optischer Pinzetten einzufangen. Das sind hochfokussierte Laserstrahlen, die Atome mit hoher Präzision halten und bewegen können. „Die benötigten fermionischen Quantengatter können auf dieser Plattform einfach implementiert werden: Tunnelgatter durch die Kontrolle des Tunnelns eines Atoms zwischen zwei optischen Pinzetten, Wechselwirkungsgatter, indem die Atome zunächst zu Rydberg-Zuständen angeregt werden, die ein starkes Dipolmoment haben“, sagt Gonzalez Cuadra.

Anwendungen von der Quantenchemie bis zur Teilchenphysik

Ein fermionischer Quantenprozessor ist besonders nützlich, um die Eigenschaften von Systemen zu simulieren, die aus vielen wechselwirkenden Fermionen bestehen, wie z. B. Elektronen in einem Molekül oder in einem Material oder Quarks in einem Proton, und könnte daher in vielen Bereichen Anwendung finden, von der Quantenchemie bis zur Teilchenphysik. Die Forscher zeigen, wie ihr fermionischer Quantenprozessor fermionische Modelle aus der Quantenchemie und der Gittereichtheorie effizient simulieren kann, zwei wichtige Bereiche der Physik, die mit klassischen Computern nur schwer zu lösen sind. „Da die Quanteninformation direkt in Fermionen verarbeitet wird, sind einige Eigenschaften des simulierten Systems auf Hardware-Ebene schon vorhanden, was bei einem Quantencomputer auf Qubit-Basis zusätzliche Ressourcen erfordern würde“, sagt Daniel Gonzalez Cuadra. „Ich bin sehr gespannt auf die Zukunft dieses Gebiets und möchte weiterhin dazu beitragen, indem ich die vielversprechendsten Anwendungen für die fermionische Quantenverarbeitung identifiziere und maßgeschneiderte Algorithmen entwerfe, die in bald verfügbaren Geräten laufen können.“

Die aktuellen Ergebnisse wurden in den Proceedings of the National Academy of Sciences (PNAS) veröffentlicht. Finanziell unterstützt wurde die Forschung unter anderem vom österreichischen Wissenschaftsfonds FWF, der Europäischen Union und der Simons Foundation.

Originalpublikation:
Fermionic quantum processing with programmable neutral atom arrays. D. Gonzalez-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. PNAS 2023

Externer Link: www.uibk.ac.at

Proof of Concept erfolgreich: THI testet Quantenschlüsselaustausch im Fahrzeug

Pressemitteilung der TH Ingolstadt vom 10.08.2023

Am CARISSMA-Institut C-ECOS der Technischen Hochschule Ingolstadt (THI) ist gemeinsam mit der Firma Quantum Optics Jena ein Quantenschlüsselaustausch mit einem Fahrzeug gelungen.

Was aussieht wie ein herkömmlicher Tesla an der E-Ladesäule, ist für die Wissenschaftler der Technischen Hochschule Ingolstadt wortwörtlich ein Quantensprung. Die Firma Quantum Optics Jena (QOJ) testete an der THI den Austausch von Quantenschlüsseln. „Wir haben in sehr kurzer Zeit schon tausende von geheimen Schlüsseln generiert“, freute sich Dr. Kevin Füchsel, CEO der Firma QOJ während des Versuchs. Das Jenaer Start-up arbeitet seit zwei Jahren an Lösungen, um die IT-Sicherheit durch den Einsatz von Quantentechnologien zu revolutionieren und auf das Fundament von physikalischen Gesetzen zu stellen. 2022 wurde THI-Vizepräsident Prof. Dr. Hans-Joachim Hof bei einer Fachmesse auf die weltweit einzigartige Lösung des Unternehmens aufmerksam und stellte den Kontakt her.

Am CARISSMA-Institut C-ECOS, Institute of Electric, Connected and Secure Mobility, beschäftigen sich die Forscher mit sicheren und nachhaltigen Lösungen für die zukünftige Mobilität. Optimale Voraussetzungen für eine Zusammenarbeit waren somit gegeben. Beim ersten Test wurden nun verschränkte Lichtteilchen über ein 50 Kilometer langes Glasfaserkabel zwischen zwei Empfänger-Modulen ausgetauscht. Eines davon wurde in das Versuchsfahrzeug integriert. Die notwendigen kryptografischen Schlüssel, etwa um ein Softwareupdate mit einem zentralem Server sicher durchführen zu können, werden dabei ganz bequem beim Aufladen der Batterie in das Fahrzeug geladen.

In Zeiten des automatisierten Fahrens und der Entwicklung von Quantencomputern wird es immer wichtiger, Fahrzeuge zu bauen, die nicht gehackt werden können. „Die Schlüssel existieren in unserem Aufbau nur zwischen den beiden Empfangsparteien und können während der Übertragung nicht abgehört werden. Dadurch lassen sich symmetrische Schlüssel für die Kommunikation zum Fahrzeug implementieren und letztendlich für eine Vielzahl von Szenarien nutzen“, erklärt Füchsel. Das Team des jungen Unternehmens ist davon überzeugt, dass sich damit die IT-Sicherheit von Fahrzeugen deutlich verbessern lässt. „Gerade für hochautomatisiertes Fahren und immer komplexere Informationssysteme hat der Schutz vor Hackerangriffen und der Einsatz von neuen Technologien eine immense Bedeutung“, erläutert Prof. Hof.

Ausgehend von diesem Erfolg werde nun ein Projektantrag beim Bundesministerium für Bildung und Forschung gestellt, sagt Marco Michl, wissenschaftlicher Mitarbeiter des CARISSMA-Instituts C-ECOS. „Die zentrale Frage ist: Wie kann ich das praktikabel in ein Fahrzeug einbauen und anwenden?“, erklärt Michl. Denn neben dem Einbau und der Qualifizierung der Empfangsmodule in die Fahrzeuge muss auch die Infrastruktur dementsprechend ausgebaut werden. Die Hürden für Netze, die – wie beispielsweise Regierungs- und Gesundheitsnetze – hochsicher sein sollen, sind hoch. „Die THI macht hier ihre ersten Schritte hinsichtlich Quantenschlüsselaustausch und quantensicherer Verschlüsselung“, so Michl.

Externer Link: www.thi.de