Besser hören – nicht nur auf Partys

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.03.2020

Den meisten Menschen fällt es nicht leicht, sich in einer belebten Umgebung auf eine spezifische Stimme zu konzentrieren. Besonders schwierig ist dies für Schwerhörige. Ein neuartiges Konzept für Hörhilfen, entwickelt unter Beteiligung von Fraunhofer-Forscherinnen und -Forschern, soll künftig die Sprachverständlichkeit in komplexen Situationen verbessern und es erleichtern, einem einzelnen Sprecher zu folgen.

Etwa 15 Millionen Deutsche sind laut Schätzungen des Deutschen Schwerhörigenbunds e.V. schwerhörig. Betroffene können Gespräche, vor allem in lauten Umgebungen, nur schlecht verstehen. Besonders in Unterhaltungen mit mehreren Personen fällt es ihnen schwer, einzelne Stimmen herauszuhören. Ihnen gelingt es nicht, sich auf einen Sprecher zu konzentrieren und störende Signale auszublenden – Experten bezeichnen dieses Manko als Cocktailparty-Effekt.

Derzeitig verfügbare Hörgeräte sind nicht in der Lage, eine Schnittstelle zwischen Ohr und Gehirn herzustellen und Schwerhörige beim selektiven Hören zu unterstützen. »Beim normal Hörenden funktioniert die Verbindung zwischen Gehirn und Ohr. Der Zuhörer weiß daher, auf welche Richtung er sich konzentrieren muss. Bei Schwerhörigen ist diese Fähigkeit stark beeinträchtigt. Auch Highend-Hörhilfen können noch nicht die Quelle hervorheben, die der Nutzer gerade hören will, besonders wenn zwei Personen gerade gleichzeitig sprechen«, erläutert Dr. Axel Winneke, Wissenschaftler am Fraunhofer-Institut für Digitale Medientechnologien IDMT in Oldenburg. »Daher benötigt man die entsprechende Information aus dem Gehirn. Über die Hirnaktivität kann man erkennen, wem der Schwerhörige zuhört. Das lässt sich per Elektroenzephalografie (EEG) messen«. Die EEG-Analyse wird im Projekt mEEGaHStim federführend vom Fraunhofer IDMT-HSA und der Universität Oldenburg durchgeführt. Hier entwickeln der Wissenschaftler und sein Team gemeinsam mit Partnern aus Industrie und Forschung ein System, das die Sprachverständlichkeit in komplexen Situationen für Hörgeschädigte verbessert. Eine Kombination aus EEG, Audiosignalverarbeitung und Elektrostimulation der Hörareale soll dies leisten. Der Trick: Eine Gehirn-Computer-Schnittstelle misst mittels EEG die Aktivität des Gehirns. Anhand der Daten lässt sich feststellen, in welche Richtung bzw. auf welche Sprachquelle der Hörgeschädigte seine Aufmerksamkeit richtet. Diese Information wird an das Hörgerät weitergeleitet, das dann ein Richtmikrofon – den sogenannten Beamformer – entsprechend ausrichtet. Der Beamformer verstärkt das vom Hörer bevorzugte Audiosignal und blendet die unerwünschten Geräuschquellen, z.B. andere Sprecher, aus. Eine dritte Komponente, die transkraniale Elektrostimulation (tES), soll dann mit diesem Sprachsignal die Hörareale elektrisch stimulieren. Mit dieser Methode der Neurowissenschaft beeinflussen die Forschenden die Aktivität des Hörzentrums beziehungsweise des auditiven Kortex‘ mit sehr kleinen Strömen gezielt, um so zusätzlich die Sprachverständlichkeit zu optimieren. Die erforderliche Hardware und Methodik zur Stimulation entwickelt im Projekt der Partner neuroConn GmbH gemeinsam mit der Universität Oldenburg.

Hearable der Zukunft

Im Projekt wurde bereits in Designstudien visualisiert, wie die neue Hörhilfe aussehen könnte. Aufbau und Konzept orientieren sich an der Interaktion mit dem Gerät. Das Design hat dabei den Anspruch, die Hörhilfe als positiven Zugewinn für den Träger zu inszenieren, entgegen einer immer noch weit verbreiteten Stigmatisierung. Künftig könnten die im Vorhaben entwickelten Komponenten inklusive Sensorik in einen tragbaren Bügel integriert werden. Denkbar ist es auch, verfügbare Hörgeräte durch die neuen Module zu ergänzen und mit einem EEG-Sensor auszustatten. »Unser aktueller Prototyp liegt noch nicht in Form einer tragbaren Hörhilfe vor, er muss noch deutlich miniaturisiert werden«, so Winneke. In ersten Probandentests mit normal Hörenden hat das Prinzip der EEG-basierten Hörunterstützung bereits gut funktioniert. Studien mit Schwerhörigen sind in Planung.

Mobile Neurotechnologie

Die am Ohr getragene EEG-Messung eignet sich auch für andere Anwendungsszenarien, beispielsweise um die Höranstrengung von Mitarbeitern am Arbeitsplatz zu erfassen. Die Technologie lässt sich zudem im medizinischen Umfeld einsetzen, insbesondere in der Neurologie, um neurologische Erkrankungen wie Epilepsie zu überwachen. »Denkbar ist es etwa, Patienten mithilfe von tragbarer EEG-Sensorik auch außerhalb der Klinik beobachten zu können. Im Projekt mEEGaHStim messen wir die Gehirnaktivität, um ein Hörgerät anzusteuern, aber man kann die Hirnströme natürlich ebenfalls bei neurologischen Störungen analysieren«, sagt Winneke. Der Forscher ist Mitarbeiter der Gruppe »Mobile Neurotechnologien« am Fraunhofer IDMT am Standort in Oldenburg. Diese arbeitet daran, Multi-Sensor-Plattformen zur Elektroenzephalografie (EEG) in konkreten Anwendungsszenarien verfügbar zu machen – beispielsweise in Gesundheitsanwendungen oder am sicherheitskritischen Arbeitsplatz, um die Analyse von Hirnaktivitäten alltagstauglich zu machen.

Externer Link: www.fraunhofer.de

Genetische Signatur steigert Proteinherstellung während der Zellteilung

Medienmitteilung der Universität Basel vom 27.02.2020

Forschende am Biozentrum der Universität Basel haben eine genetische Signatur entdeckt, die es Zellen erlaubt, die Herstellung von Proteinen ihrem jeweiligen Zustand anzupassen. Dieser neu entdeckte Mechanismus, so berichten die Forscher in «Genome Biology», trägt dazu bei, die Herstellung von Proteinen während der Zellteilung zu steuern.

Für Zellen ist die Herstellung von Proteinen sehr energieaufwändig. Um die zellulären Ressourcen effizient zu nutzen, muss dieser Prozess besonders streng reguliert werden. Forscher um Prof. Mihaela Zavolan vom Biozentrum der Universität Basel haben nun herausgefunden, wie mithilfe des genetischen Codes die Produktion von Proteinen während des Wachstums und der Vermehrung von Zellen gesteuert wird. Dieser Mechanismus spielt möglicherweise auch bei der unkontrollierten Zellteilung eine Rolle.

Mehrere Codons für eine Aminosäure

Der genetische Code ist wie eine eigene Sprache, mit Wörtern aus nur drei Buchstaben. Jedes Wort, auch als Codon bezeichnet, steht für eine Aminosäure, die Grundbausteine der Proteine. Da 64 Codons für 20 Aminosäuren zur Verfügung stehen, gibt es für jede Aminosäure mehr als nur ein Codon.

Die verschiedenen Codons, die für ein und dieselbe Aminosäure stehen, kommen jedoch nicht gleich häufig im Genom vor. Einige findet man häufig, andere nur sehr selten. «Bisher hat man angenommen, dass seltene Codons die Proteinproduktion generell bremsen», sagt Zavolan. «Unsere Ergebnisse zeigen jedoch ein differenzierteres Bild. So kurbeln seltene Codons während der Zellteilung die Herstellung spezifischer Proteine sogar an.»

Seltene Codons regeln Proteinherstellung

Um ein Protein herzustellen, muss zunächst das Gen für dieses Protein kopiert werden. Diese Kopie, die sogenannte Boten-RNA, wird anschliessend in den Proteinfabriken der Zelle durch spezifische Moleküle in eine Abfolge von Aminosäuren übersetzt. Die Boten-RNAs, die bei der Vermehrung von Zellen eine Rolle spielen, werden in der Regel von seltenen Codons kodiert. Während der Ruhephase stellt die Zelle nur wenige dieser Proteine her. Denn die Übersetzungsmoleküle für die seltenen Codons kommen in der Zelle auch nur selten vor, daher dauert es länger sie abzulesen.

«Die Situation ändert sich, wenn die Zelle auf Vermehrung umschaltet. In diesem Fall stehen mehr Übersetzer für die raren Codons zur Verfügung», erklärt Joao Guimaraes, Erstautor der Studie. «Die zellteilungsspezifischen Boten-RNAs, die häufig solche seltenen Codons aufweisen, können nun effizienter abgelesen werden. Die Herstellung dieser Proteine erfährt dadurch einen Schub.» Mithilfe der seltene Codons lässt sich die Produktion bestimmter Proteine gezielt steuern, je nach Bedarf der Zelle.

Genetische Signatur für Zellvermehrung

«Unsere Arbeit stellt die derzeitige Vorstellung in Frage, dass seltene Codons sich nachteilig auf die Herstellung von Proteinen auswirken», sagt Guimaraes. «Wir konnten zeigen, dass seltene Codons ganz spezifisch die Produktion solcher Proteine ankurbeln, die für die Zellteilung notwendig sind.» Das Wissen über die genetischen Signatur hilft auch die fehlgesteuerte Proteinherstellung während der Krebsentstehung besser zu verstehen. Krebs ist eine Erkrankung, bei der normale Zellen entarten und sich deshalb unkontrolliert vermehren.

Originalbeitrag:
Joao Guimaraes, Nitish Mittal, Alexandra Gnann, Dominik Jedlinski, Andrea Riba, Katarzyna Buczak, Alexander Schmidt and Mihaela Zavolan
A rare codon-based translational program of cell proliferation
Genome Biology (2020), doi: 10.1186/s13059-020-1943-5

Externer Link: www.unibas.ch

Haben ein Auge für Farben: druckbare Lichtsensoren

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 19.02.2020

Team des KIT entwickelt druckbare organische Fotodioden, die Wellenlängen unterscheiden und damit Datenübertragung via Licht ermöglichen können.

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von sichtbarem Licht (engl. Visible Light Communication, VLC). VLC nutzt die Innenbeleuchtung in Gebäuden für die optische Kommunikation. Diese Technologie bietet in Bezug auf Sicherheit, Geschwindigkeit und Zugänglichkeit eine Reihe von Vorteilen im Vergleich zu aktuellen Übertragungsverfahren wie WLAN oder Bluetooth. „Unsere Forschung trägt zu dieser Technologie bei, indem wir die Vorteile einer speziellen Art von Materialien, nämlich organische Halbleiter, und deren Herstellung mit Drucktechniken verbinden“, so Dr. Gerardo Hernandez-Sosa vom Lichttechnischen Institut des KIT, einer der Autoren der Publikation.

Halbleiter sind die Basis von Computern, Smartphones, Solarzellen und von vielen anderen Technologien. Einige der Halbleitermaterialien reagieren auf Licht, indem sich ihre Leitfähigkeit ändert und die Lichtintensität als elektrischer Strom gemessen werden kann. Innerhalb dieser Klasse von Materialien gibt es zudem einige, die wie Druckertinte mit einem Drucker auf ein Trägermaterial aufgebracht werden können. Diese Materialien reagieren auf unterschiedliche Wellenlängen, können also Farben unterscheiden. Dem Team um Hernandez-Sosa ist es nun gelungen, eine Materialzusammensetzung zu finden, die sich für den Einsatz als wellenlängensensibler Lichtdetektor eignet und sich zudem auf flexible Träger aufdrucken lässt. Dabei können Flächen von sehr klein bis sehr groß bedruckt werden. Das Layout lässt sich mithilfe eines Computers einfach gestalten. „Diese Fotosensoren können in großen Stückzahlen in jedem Design auf flexiblen, leichten Materialien hergestellt werden. Daher sind sie besonders für mobile Geräte geeignet”, so Erstautor Noah Strobel.

Der Druck von Halbleiterbauelementen ist eine relativ junge Entwicklung, aber ihr Potenzial für zukünftige Anwendungen ist sehr hoch. Schon jetzt investiert die Industrie in großem Umfang in die Herstellung von gedruckten OLED-Displays für Fernseher und Smartphones. Auch gedruckte flexible Solarzellen oder Drucksensoren sind bereits im Handel. Die Herstellung von gedruckten Lichtdetektoren hat gleichfalls bereits das industrielle Niveau erreicht. Daher sind die Chancen hoch, dass diese Elemente in Zukunft in vielen Anwendungen eingesetzt werden, insbesondere angesichts der steigenden Nachfrage nach Sensoren im Internet der Dinge, in Smart Cities und in der Industrie 4.0. (rl)

Originalpublikation:
Noah Strobel, Nikolaos Droseros, Wolfgang Köntges, Mervin  Seiberlich, Manuel  Pietsch, Stefan Schlisske, Felix Lindheimer, Rasmus R. Schröder, Uli Lemmer, Martin Pfannmöller, Natalie Banerji, Gerardo Hernandez-Sosa: „Color-selective Printed Organic Photodiodes for Filterless Multichannel Visible Light Communication“. Advanced Materials, 2020. DOI: 10.1002/adma.201908258.

Externer Link: www.kit.edu

Quanten-Effekt erstmals bewiesen: Die Spin-Rotations-Kopplung

Presseaussendung der TU Wien vom 17.02.2020

Vor über 30 Jahren wurde er vorausgesagt, nun konnte der Effekt von einem Team der TU Wien erstmals nachgewiesen werden: Der Spin von Neutronen zeigt eine bestimmte Art von Trägheit.

Stellen wir uns vor, wir tanzen über die Wiese und drehen uns dabei rasch um die eigene Achse. Und irgendwann hopsen wir dabei auf ein rotierendes Karussell. Die Drehung des Karussells beeinflusst augenblicklich unsere eigene Rotation, ein Drehimpuls wird übertragen – je nachdem, wie gut unser Gleichgewichtssinn trainiert ist, endet das möglicherweise schmerzhaft. Kann man ähnliche Effekte auch bei Quantenteilchen beobachten?

Nach jahrelanger Vorarbeit gelang es nun einem Team der TU Wien, den Eigendrehimpuls von Neutronen zu untersuchen, die von einem nichtrotierenden in ein rotierendes Bezugssystem überwechseln. Dazu musste eine neuartige Magnetspule entwickelt werden, die den Neutronenstrahl einem rotierenden Magnetfeld aussetzt. Dabei wurde nachgewiesen: Ähnlich wie klassische Objekte zeigt der Spin des Neutrons eine gewisse Trägheit, obwohl der Neutronen-Spin selbst keine Masse besitzt und grundsätzlich nur mit den Gesetzen der Quantenphysik verstanden werden kann. Die Ergebnisse des Experiments wurden nun im Fachjournal „Nature Partner Journal Quantum Information“ veröffentlicht.

Was sich dreht, will sich weiterdrehen

„Trägheit ist ein Grundprinzip, mit dem wir ständig zu tun haben“, sagt Stephan Sponar vom Atominstitut der TU Wien. „Wenn wir in einem Zug sitzen, der sich völlig gleichförmig dahinbewegt, dann fühlt sich das genauso an, als würden wir unbewegt zu Hause auf einem Sessel sitzen. Doch wenn wir das Bezugssystem wechseln, etwa wenn wir aus dem Zug auf die Wiese springen, dann werden wir unsanft abgebremst, wir spüren Kräfte aufgrund der Trägheit unserer Masse.“

Bei Drehungen ist die Sache ähnlich: Auch ein drehendes Objekt behält seinen Drehimpuls bei, solange kein äußeres Drehmoment auf das Objekt einwirkt. Doch hier wird die Sache kompliziert, wenn man den Blick auf Quantenteilchen richtet: „Teilchen wie Neutronen oder Elektronen besitzen nämlich eine ganz besondere Art des Drehimpulses – den Spin“, erklärt Armin Danner, Erstautor der aktuellen Publikation.

Der Spin ist der Eigendrehimpuls des Teilchens. Oft wird er mit der Eigendrehung eines Planeten um seine eigene Achse verglichen, aber der Vergleich trifft die Sache nicht besonders gut: Der Spin ist nämlich auch bei Quantenteilchen zu beobachten, die punktförmig sind, die also im klassischen Sinn gar nicht um eine Achse rotieren können. „Den Spin kann man sich vorstellen als Eigendrehung, zusammengezogen auf einen unendlich kleinen Punkt“, sagt Armin Danner. Der Spin lässt sich nur mit dem Formalismus der Quantentheorie vollständig erklären, zu unserer Alltagserfahrung passt er nicht so richtig. Das Konzept der Trägheit, das wir aus dem Alltag kennen, bleibt aber hier trotzdem noch gültig.

Kopplung zwischen Spin und Magnetfeld

„Schon 1988 wurde postuliert, wie sich ein Neutron verhalten soll, wenn es von einem nichtrotierenden in ein rotierendes Bezugssystem wechselt, und wieder zurück“, erzählt Prof. Yuji Hasegawa, Leiter der Arbeitsgruppe Neutroneninterferometrie des Atominstituts. „So wurde vorhergesagt, dass es eine Kopplung zwischen dem Neutronenspin und einem rotierenden Magnetfeld geben muss. Doch bisher ist es niemandem gelungen, diesen Effekt direkt in seiner quantenmechanischen Natur nachzuweisen. Auch wir haben einige Jahre und mehrere Anläufe dafür gebraucht, aber nun konnten wir den Kopplungseffekt eindeutig demonstrieren.“

Ähnlich wie ein Tänzer, der einen Eigendrehimpuls hat und sich dann plötzlich über ein rotierendes Karussell bewegt, wird das Neutron mit seinem Spin durch einen Bereich mit rotierendem Magnetfeld geschickt. Dadurch wird der Spin des Neutrons beeinflusst – allerdings so, dass es beim Verlassen des rotierenden Magnetfelds wieder genau dieselbe Orientierung hat wie am Anfang. Das heißt, die Drehachse des Eigendrehimpulses ist die gleiche. Beim Übertritt vom nicht rotierenden Bereich in den rotierenden Bereich und wieder zurück treten allerdings Trägheitsphänomene auf, die quantenmechanisch detektiert werden können.

Dazu muss man den Neutronenstrahl in zwei Pfade aufspalten: Einer wird durch das rotierende Magnetfeld gelenkt, der andere nicht. Am Ende werden beide Pfade miteinander vereint. Nach den Regeln der Quantenphysik legt jedes einzelne Neutron beide Pfade gleichzeitig zurück. Die Trägheitskräfte führen dazu, dass sich die Wellenlänge entlang des einen Weges lokal ändert – und das bestimmt, wie sich die beiden Teilchen-Wellen der beiden Pfade nach der Vereinigung gegenseitig verstärken oder auslöschen.

Die größte Herausforderung dabei war das Design einer speziellen Spule, mit der man ein rotierendes magnetisches Feld erzeugen kann. In die Spule muss ein kleines Fenster eingebaut werden, durch das der Neutronenstrahl gelangt – und gleichzeitig muss das Magnetfeld im Inneren der Spule exakt die richtige Form haben. Eine passende Geometrie wurde mittels Computer-Simulationen gefunden. Entwickelt und getestet wurde das System an der Neutronenquelle der TU Wien, die endgültigen Messungen wurden dann am ILL in Grenoble durchgeführt.

„Das Faszinierende daran ist, dass es sich hier um einen reinen Quanteneffekt handelt, den man zunächst auf klassische Weise nicht verstehen kann“, sagt Armin Danner. „Unser Alltagsverständnis von Drehimpuls und Rotation hilft uns hier scheinbar nicht weiter. Aber wir haben gezeigt, dass das klassische Konzept der Trägheit auch in den extremen Spezialfällen unserer Untersuchungen sinnvoll bleibt.“ (Florian Aigner)

Originalpublikation:
A. Danner et al., Spin-rotation coupling observed in neutron interferometry, npj Quantum Information 6, 23 (2020).

Externer Link: www.tuwien.ac.at