Immunzellen gegen hartnäckige Viren: With a little help from my friends

Medienmitteilung der Universität Basel vom 09.11.2021

Viren wie HIV oder der Erreger von Hepatitis C können das Immunsystem überrennen. Ein Ansatz zur Entwicklung von Impfstoffen gegen diese chronischen Infektionen zielte bisher auf die sogenannten B-Gedächtniszellen des Immunsystems. Forschende der Universität Basel berichten nun, dass diese Zellen die Hilfe anderer Gedächtniszellen brauchen, um den Organismus effektiv gegen chronische Viren zu verteidigen. Eine wichtige Erkenntnis für das Impfstoff-Design.

Ein Arsenal aus Immunzellen verteidigt den Organismus gegen Krankheitserreger. Bei einer Virus-Infektion produzieren B-Zellen passende Antikörper, die das Virus inaktivieren. Ein Teil dieser B-Zellen stirbt nach der Infektion oder Impfung wieder ab, doch einige B-Zellen verbleiben als Gedächtniszellen im Körper, um bei einer erneuten Infektion mit dem gleichen Erreger rascher die richtigen Antikörper zu produzieren. Impfstoffe zielen unter anderem auf die Bildung solcher B-Gedächtniszellen ab.

Viren wie HIV oder das Hepatitis-C-Virus überrennen jedoch die Abwehr der B-Gedächtniszellen – eine Hürde für die Entwicklung effizienter Impfstoffe. Um dieses Hindernis zu überwinden, untersucht das Forschungsteam um Prof. Dr. Daniel Pinschewer vom Departement Biomedizin der Universität Basel das Zusammenspiel der Immunzellen bei chronischen Virusinfektionen.

«Ein Problem ist, dass die B-Gedächtniszellen angesichts der Dauerpräsenz des Erregers und der damit einhergehenden Entzündung in eine Art Panikreaktion verfallen», erklärt Pinschewer. Aus einem Programm der Vermehrung und Reifung wechseln sie allesamt in den Modus der Antikörperproduktion und gehen bald darauf zugrunde. Über mögliche Abhilfe für dieses Problem berichtet das Team nun im Fachjournal «PNAS».

T-Helfer-Gedächtniszellen verhindern Panikreaktion

Für ihre Experimente studierten die Forschenden die Infektion von Mäusen mit einem Maus-Virus namens Lymphozytäres Choriomeningitis Virus (LCMV), das bei den Tieren zu einer chronischen Infektion führt. Dabei stellten sie fest, dass die B-Gedächtniszellen für eine nachhaltige Reaktion auf die Viren die Hilfe anderer Immunzellen brauchen: nämlich T-Helfer-Gedächtniszellen, deren Bildung ebenfalls durch passende Impfstrategien ausgelöst werden kann.

Regten die Forschenden bei den Versuchstieren vorgängig zur LCMV-Infektion die Bildung von passenden T-Helfer-Gedächtniszellen an, verhinderten letztere nach der Infektion die Panikreaktion der B-Gedächtniszellen. «Anstatt dass sich der gesamte Bestand an B-Zellen im erfolglosen Kampf gegen die Viren verausgabt, bleibt dank der T-Helfer-Gedächtniszellen eine Reserve an B-Zellen zurück, die sich weiter vermehren und reifen und die Abwehr gegen das Virus aufrechterhalten», so Dr. Kerstin Narr, die Erstautorin der Studie.

Die Rolle der T-Helfer-Gedächtniszellen bei der Impfung gegen chronische Viren sei bislang unzureichend berücksichtigt worden. «Die Erkenntnis, dass man über diese Zellen eine nachhaltigere Immunantwort durch B-Gedächtniszellen fördern kann, hat direkte Relevanz für Strategien zur Entwicklung neuer Impfstoffe gegen HIV und Hepatitis C», betont Pinschewer.

Originalpublikation:
Kerstin Narr et al.
Vaccine-elicited CD4 T cells prevent the deletion of antiviral B cells in chronic infection
PNAS (2021), doi: 10.1073/pnas.2108157118

Externer Link: www.unibas.ch

Biosignale präzise messen: Informatiker erleichtern die Positionierung von Elektroden am Körper

Pressemitteilung der Universität des Saarlandes vom 04.11.2021

Vielen ist es aus der Medizin bekannt: Um Biosignale wie den Herzschlag oder Muskelkontraktionen zu messen, müssen Sensorelektroden auf der Haut platziert werden. Bisher war das eine Aufgabe für Experten, denn die Qualität der erhaltenen Messungen hängt maßgeblich von der korrekten Positionierung dieser Elektroden ab. Informatiker der Universität des Saarlandes haben ein Verfahren entwickelt, das diesen Prozess für eine bestimmte Körperzone mit nur wenigen Mausklicks automatisiert.

Ihre Ergebnisse veröffentlichen sie nun in dem international renommierten Fachmagazin Nature Communications.

Ob im Sport, der Rehabilitation oder für neuartige IT-Anwendungen: Genau erfasste Biosignale wie Herzschlag oder Muskelaktivität sind wichtig um Leistung zu messen, gesundheitlichen Fortschritt sicherzustellen und können sogar genutzt werden, um Computer zu steuern. Elektrophysiologische Sensorelektroden, die auf der Haut angebracht werden, erfassen diese Signale. „Die manuelle Platzierung dieser Elektroden erfordert anatomische Kenntnisse und beruht auf einer Reihe medizinischer Leitfäden, die beschreiben, an welchen Stellen die besten Signale abgegriffen werden können“, erklärt Aditya Shekhar Nittala, Doktorand in der Forschungsgruppe zur Mensch-Maschine-Interaktion von Professor Jürgen Steimle am Saarland Informatics Campus.

Manche Anwendungsfälle stellen besondere Anforderungen an die Positionierung der Sensorelektroden: So kann es im Leistungssport für die Kontrolle von Trainingserfolgen nötig sein, dass gleichzeitig mehrere Biosignale erfasst werden, ohne dabei die Bewegungsfreiheit des Trägers einzuschränken. „In so einem Fall greifen viele verschiedene Variablen ineinander, sodass es auch für Experten eine große Herausforderung ist, mit vertretbarem Zeitaufwand gute Messergebnisse zu erzielen“, ergänzt Aditya Nittala. Als Teil seiner Doktorarbeit über computerbasiertes Design hat er nun ein Verfahren entwickelt, das mit nur wenigen Mausklicks in Sekundenschnelle ein Elektroden-Layout errechnen kann, um am Unterarm gleichzeitig Muskelaktivitäten (EMG), die Leitfähigkeit der Haut (EDA), und die Herzspannungskurve (EKG) zu messen.

Jürgen Steimle, Informatik-Professor der Universität des Saarlandes und Experte für Mensch-Maschine-Interaktion, erklärt dazu: „Wir zeigen, dass ein Optimierungsansatz verwendet werden kann, um kompakte, tragbare Geräte zu entwickeln, die mehrere Biosignal-Modalitäten messen können. Der Hauptbeitrag liegt hier nicht nur in der Anwendung geometrischer Optimierung zur Lösung des Problems der Elektrodenplatzierung, sondern auch in der Identifizierung, Formalisierung und Integration der Regeln, die der Elektrodenplatzierung für die Messung mehrerer Modalitäten innewohnen“, so der Informatiker. Bisher errechnet das Design-Programm ausschließlich Elektroden-Layouts für den Unterarm, da die Forscher hier auf eine ausgeprägte Datengrundlage zurückgreifen konnten. Mit den passenden Daten ließe sich die Methode aber auch auf andere Körperregionen erweitern.

Die Arbeit unter dem Titel „Computational Design and Optimization of Electro-Physiological Sensors“ wurde nun im international renommierten Fachmagazin Nature Communications veröffentlicht. Neben Aditya Shekhar Nittala und Professor Jürgen Steimle waren Dr. Andreas Karrenbauer vom Saarbrücker Max-Planck-Institut für Informatik sowie Professor Tobias Kraus und Dr. Arshad Khan vom Leibniz Institut für neue Materialien (INM) in Saarbrücken beteiligt. In die Entwicklung der neuen Methode ist zudem der Input unabhängiger Sportexperten eingeflossen.

Ergänzt wird der neue Ansatz durch das Projekt „PhysioSkin“, das ebenfalls in Jürgen Steimles Gruppe entwickelt wird. „PhysioSkin“ ist eine Methode, anhand derer mit handelsüblichen Tintenstrahl-Druckern ultradünne, leitfähige Tattoos hergestellt werden können. Indem man mit dem neuen Tool am Computer ein Elektroden-Layout errechnet und dieses dann anschließend mit „PhysioSkin“ ausdruckt, können schnell und einfach Prototypen für tragbare elektronische Geräte hergestellt werden. So haben die Forscher eine Steuerung entwickelt, die Muskelkontraktionen als Eingabesignale erkennt und so beispielsweise nachvollzieht, wie der Nutzer Liegestütze macht.

Originalpublikation:
Nittala, A.S., Karrenbauer, A., Khan, A. et al. Computational design and optimization of electro-physiological sensors. Nat Commun 12, 6351 (2021).

Externer Link: www.uni-saarland.de

Batteriedaten schnell und automatisiert auswerten und für KI-Prozesse bereitstellen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 02.11.2021

Elektrochemische Energiespeicher- und Brennstoffzellentechnologien sind Schlüsselelemente für eine erfolgreiche Energiewende. Mit modularen Softwarepaketen ermöglicht die Batalyse GmbH, ein Spin-off des Fraunhofer-Instituts für Chemische Technologie ICT, die automatisierte Erfassung, Dokumentation und Auswertung von Testdaten von Batterien, Akkus und Brennstoffzellen. Anhand der visualisierten Ergebnisse können Materialhersteller und Zellentwickler sowie F&E-Abteilungen ihre Produkte gezielt und effektiv weiterentwickeln und optimieren.

In Batterien und Brennstoffzellen entscheiden optimierte Materialien und Komponenten wie Elektroden, Aktivmaterialien, Elektrolyte und Separatoren über die Lebensdauer, Qualität und Leistungsfähigkeit des Systems. Für die Elektromobilität oder stationäre Energiespeicherung werden neue, nachhaltige, recyclingfähige Materialkombinationen benötigt, die sich gegenüber verfügbaren Systemen etwa durch eine höhere Energiedichte oder geringere Herstellungskosten auszeichnen. Um die Suche nach neuen Materialien und dem richtigen Materialmix zu beschleunigen, bietet die Batalyse GmbH eine modulare Softwarelösung für die effektive Datenauswertung und das Informationsmanagement an. Das Spin-off wurde im Mai 2021 als eigenständige Gesellschaft aus dem Fraunhofer ICT in Pfinztal von Dr. Markus Hagen und seinem Kollegen und CTO der Batalyse GmbH, Eran Nave, ausgegründet.

Bestmögliche Batterie der Zukunft

»Hersteller unterziehen ihre Batterien und Materialien fortlaufenden Kontrollen und prüfen zahlreiche Parameter wie die Qualität der Produktionsprozesse oder der Elektroden. Hierbei unterstützen wir die Unternehmen mit unseren drei Softwaremodulen Data Analysis, Collect und Mind, um letztendlich die beste Batterie der Zukunft zu entwickeln«, sagt Dr. Markus Hagen, CEO der Batalyse GmbH. Data Analysis wertet Batteriedaten und elektrochemische Tests sowohl von Labortestzellen als auch von kommerziellen Zellen aus und vergleicht die Werte. Beispielsweise erhalten Käufer von Batteriezellen die Möglichkeit, Lieferanten und Produktionschargen zu vergleichen. Welche Batteriezelle die beste Performance zeigt, ist sofort ersichtlich.

Data Analysis wertet unabhängig vom eingesetzten Testgerät aus und ist kompatibel zu allen Dateiformaten und Dateistrukturen – ein großer Vorteil gegenüber Konkurrenzprodukten. Die Module Collect und Mind sind separat erhältlich, es empfiehlt sich jedoch, das komplette Paket einzusetzen, da alle Module ineinandergreifen. Die Datenmanagement-Software Collect sammelt alle Rohdaten und zugehörige Metadaten automatisiert ein und speichert sie zentral ab. Dabei beschränkt sich das Tool nicht auf Batterien und Brennstoffzellen, sondern erfasst auch Prozess-, Analyse-, Produktions-, und Bilddaten. Mind visualisiert diese Daten aus Collect und ergänzt zusätzliche Informationen wie Kunden-, Prüflings-, Material- und Projektdaten, die kategorisiert, gefiltert und vernetzt werden können. Ein Berechtigungsmanagement regelt, wer Zugriff auf die jeweiligen Daten erhält, und ermöglicht das Teilen von Projekten mit Kunden. Die Ergebnisse, die Data Analysis liefert, lassen sich darüber hinaus in Collect wieder speichern und in Mind darstellen. Collect und Mind erfassen sämtliche Daten und Informationen und liefern so die Basis für den Einsatz von Künstlicher Intelligenz. »In der Forschung, Entwicklung und Produktion kostet die Datenauswertung und -dokumentation viel Zeit. Hinter einer einfachen Messung stehen Informationsketten mit hunderten Parametern zu Materialien, Prozessen und Werkzeugen. Durch die Kombination unserer Softwaremodule automatisieren wir die komplette Datenverarbeitung und können Daten und Informationen für einen KI-Einsatz vorbereiten«, ergänzt der CEO.

Während Data Analysis bereits erhältlich ist, werden die Prototypen Mind und Collect aktuell am Fraunhofer ICT eingesetzt. Anfang 2022 sollen sie verfügbar sein. Industriekunden können beide Module jedoch schon jetzt testen.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick November 2021

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Circular Fashion: Design, Science and Value in a Sustainable Clothing Industry
Louise O. Fresco (Wageningen University & Research) et al.
Start: flexibel / Arbeitsaufwand: 40-60 Stunden

Externer Link: www.edx.org