Vorbild Miesmuschel: Druckbarer Klebstoff für Gewebe und Knochen

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.12.2023

Hüftimplantate aus Titan halten nicht ewig. Sie lockern sich früher oder später und verlieren ihren Halt im Knochen, da sich dieser mit der Zeit zurückbildet. Forschende am Fraunhofer-Institut für Angewandte Polymerforschung IAP haben gemeinsam mit dem Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB und dem Fraunhofer USA Center for Manufacturing Innovation CMI einen Gewebekleber entwickelt, mit dem sich der frühzeitige Austausch von Prothesen künftig vermeiden lässt. Auf die Titanoberfläche des Implantats aufgebracht, stellt das biomimetische, antimikrobielle Material die Verbindung zum Knochen her – es haftet selbstständig an. Der Clou: Der Gewebekleber, der die haftende Eigenschaft von Miesmuscheln nachahmt, ist druckbar und lässt sich sogar auf gekrümmte, unebene Flächen drucken.

Sie sind das Ärgernis eines jeden Reeders: Miesmuscheln haften fest an Außen- und Unterseiten von Schiffen, der Bewuchs lässt sich nur schwer entfernen. Ein Protein, das die Aminosäure Dihydroxyphenylalanin – auch DOPA genannt – enthält, ist verantwortlich für die haftende Wirkung der Muscheln an Oberflächen. Forschende am Fraunhofer IAP im Potsdam Science Park haben in Zusammenarbeit mit dem Fraunhofer IGB und dem Fraunhofer USA CMI einen biomimetischen Kleber entwickelt, der diese Eigenschaft nachahmt. Er zeichnet sich durch außergewöhnliche Haftungs- und Bindungseigenschaften aus und hat daher das Potenzial, in verschiedenen biomedizinischen Anwendungen eingesetzt zu werden. So lassen sich etwa offene Wunden damit verschließen. Auch können Titanoberflächen von Implantaten damit beklebt werden, damit der Körper die Oberfläche als knochenähnliche Substanz erkennt und die Verbindung zum Knochen herstellt.

»DOPA sorgt für eine äußerst effektive Haftung. Diese Eigenschaft haben wir auf unseren Klebstoff übertragen, indem wir Polymere synthetisiert haben, die den Baustein Dopamin enthalten, ein chemisches Analogon von DOPA. Der dopaminbasierte Klebstoff lässt sich mit verschiedenen Additiven, wie Apatit-Partikeln – eine Substanz, aus der Zähne bestehen –, Proteinen und Signalmolekülen versetzen. Diese fördern das Wachstum von Knochenzellen und können als Beschichtungsmaterial etwa für Titanimplantate verwendet werden«, erläutert Dr. Wolfdietrich Meyer, Wissenschaftler am Fraunhofer IAP. Die spezielle Beschichtung lässt das Implantat für den Körper natürlicher erscheinen und kann die Heilung und Integration des Implantats im Körper fördern. Der biobasierte, nachhaltig hergestellte Klebstoff besitzt zudem antimikrobielle Eigenschaften.

Die dopaminbasierten Polymere eignen sich nicht nur für Gewebeklebstoffe, sondern auch für die Entwicklung funktionalisierter Oberflächen, antibakterieller Materialien und intelligenter Beschichtungen mit speziellen Funktionen.

Photoreaktiver Kleber lässt sich auf unebene Flächen drucken

Durch chemische Synthese kann man die Funktionalität des Klebers erweitern. Er lässt sich derart modifizieren, dass er auf Licht reagiert. Wird er mit UV-Licht bestrahlt, so härtet er aus. Dabei verstärkt sich seine haftende Wirkung. Photoreaktive Materialien lassen sich im 3D-Druck in Gegenwart von UV-Strahlung verarbeiten. Auf diese Weise können komplexe Strukturen für maßgeschneiderte medizinische Implantate aufgebaut werden.

Dem Forscherteam an den Fraunhofer-Instituten IAP und IGB ist es gelungen, den Kleber durch Vernetzung der Polymere druckbar zu machen. »Wir haben quasi das Druckmaterial für den 3D-Druck entwickelt«, sagt Meyer. Am Fraunhofer Center for Manufacturing Innovation CMI in Boston, USA, wurde das Material mithilfe eines Bioprinters auf einen dreidimensionalen Titaniumshaft eines Hüftgelenks aufgebracht.

Künftig arbeiten die Forscherinnen und Forscher an Lösungen, wie man den Kleber schaltbar machen kann. »Hat der Chirurg den medizinischen Klebstoff beispielsweise geringfügig falsch platziert, muss er diesen Fehler schnell korrigieren und die klebende Wirkung deaktivieren können«, erklärt der Chemiker.

Externer Link: www.fraunhofer.de

technologiewerte.de – MOOCblick Dezember 2023

Spannende Themen, herausragende Dozenten und flexible Lernmöglichkeiten tragen zum wachsenden Erfolg der Massively Open Online Courses (MOOCs) bei – offene, internetgestützte Kurse mit einer Vielzahl an Teilnehmern rund um den Globus.

Folgender Kurs – zu finden auf der MOOC-Plattform edX – sollte einen Blick wert sein:

Data Literacy Foundations
Beth Prince-Bradbury (Rochester Institute of Technology)
Start: flexibel / Arbeitsaufwand: 24-32 Stunden

Externer Link: www.edx.org

Vom Labor auf die Straße: Wie die TU Graz Fahrassistenzsysteme sicherer macht

Presseaussendung der TU Graz vom 27.11.2023

Im Christian Doppler Labor unter seiner Leitung hat Franz Wotawa mit Unternehmenspartner AVL Test- und Überwachungsverfahren entwickelt, die gängige Fahrassistenzsysteme sicherer machen.

Intelligenter Geschwindigkeitsassistent, Notbremsassistent, Notfall-Spurhalteassistent, Müdigkeitsassistent, Rückfahrassistent, Warnsystem bei nachlassender Konzentration oder Notbremslicht – ab Juli 2024 werden eine ganze Reihe von Sicherheits- und Fahrassistenzsystemen für alle Neuwagen in der Europäischen Union verpflichtend. Dass diese Systeme auch wie gewünscht funktionieren und wirklich für mehr Sicherheit sorgen, daran forscht seit Oktober 2017 das Christian Doppler Labor für Methoden der Qualitätssicherung von autonomen Cyber-Physikalischen Systemen an der TU Graz zusammen mit Unternehmenspartner AVL List GmbH. Dabei hat das Laborteam unter der Leitung von Franz Wotawa vom Institut für Softwaretechnologie der TU Graz mittels Grundlagenforschung neue Methoden entwickelt, um Fehlerquellen bei Fahrassistenzsystemen vorab auszuschließen und im laufenden Betrieb zu analysieren. AVL konnte darauf aufbauend selbst neue Methoden und Verfahren in das Portfolio im Bereich Advanced Driver Assistance Systems (ADAS) aufnehmen.

Kleine Abweichungen mit großer Wirkung

Konkret mussten sich Franz Wotawa und sein Team unter anderem der Herausforderung stellen, dass schon geringfügige Abweichungen bei einem bestimmten Verkehrsszenario die Reaktion von Fahrassistenzsystemen deutlich beeinflussen können. Da die Systeme diese Abweichungen nicht erst im laufenden Betrieb erlernen sollen, wurde ein Verfahren zur automatisierten Generierung von Testfällen ausgehend von Ontologien entwickelt. Ontologien sind Beschreibungen der Umgebung, in der sich das Fahrzeug im jeweiligen Testfall befindet. Diese Beschreibungen enthalten etwa Informationen zum vorhandenen Straßennetz, Ampeln, Straßenschildern, anderen Fahrzeugen oder Fußgängern.

Für die Testfallgenerierung hat das Team ein suchbasiertes und ein kombinatorisches Testverfahren angepasst und darauf aufbauend eine algorithmusbasierte Verknüpfung der Ontologien mit einem Eingabe-Modell vorgenommen. So können automatisiert noch besser und umfangreicher Testszenarien abgeleitet und durchgespielt werden – unabhängig vom getesteten Assistenz- oder Sicherheitssystem. Beispielsweise gelang es damit, bei einem Notbremsassistenten während der Tests einige unentdeckte Fehler zu finden, die dann genauer analysiert werden konnten.

Blick auf Realbedingungen

Trotz der ausgeklügelten Testverfahren bleibt der Blick auf den laufenden Betrieb unerlässlich, da es dort immer zu unvorhergesehenen Situationen kommen kann. Hier vergleicht das Team gesammelte Auto-Sensordaten mit dem erwarteten Verhalten der Fahrzeuge und versucht dies mit formalisiertem Wissen über Objektbewegungen zu kombinieren. Der Fokus liegt dabei auf der Objekterkennung, um aus einer Sequenz von Bildern die Objektbewegung mittels logischer Ableitung zu formalisieren. Durch die Nachverfolgung der Objekte über mehrere Bildframes lassen sie sich als potenziell gefährlich oder ungefährlich klassifizieren und die geeigneten Maßnahmen ableiten – etwa ob ein Baum direkt angesteuert wird und ausgewichen werden muss oder die Fahrt doch daran vorbeigeht. Diese Erkenntnisse fließen in weiterer Folge in Updates der Assistenzsysteme ein. Zusätzlich können die Daten aus den Erfahrungen im Realbetrieb auch genutzt werden, um weitere Testfälle zu generieren.

Mit der Frame-für-Frame-Analyse in Kombination mit einem Logikmodell für räumliche Wahrnehmung können auch die Objekterkennung verbessert und so nicht durchgehend erkannte Objektbewegungen abgeleitet werden. Das ist etwa dann nützlich, wenn ein Objekt zwar für einige Frames sichtbar ist, aber aufgrund von Reflexionen oder eines Sensorfehlers für einen Frame nicht erkannt wird. Ein Assistenzsystem könnte dadurch denken, dass in diesem Bereich keine Gefahr mehr vorhanden ist. Dank des Logikmodells leitet die Software aber ab, dass das Objekt nach wie vor da sein muss, weil es nicht einfach so verschwinden kann.

Rascher Wissenstransfer in die Industrie

Für Franz Wotawa sind die bisher erreichten Ergebnisse des noch bis Ende September 2024 laufenden CD-Labors der Beleg dafür, dass die Verbindung von Grundlagenforschung mit konkreten Anwendungen durch den Unternehmenspartner viele Vorteile bietet. „Wir haben einen sehr direkten Austausch mit AVL, jede*r Doktorand*in arbeitet fünf bis zehn Stunden pro Woche auch im Unternehmen. Dadurch kennen wir die Problemstellungen aus der Industrie genau und können ausgehend davon Grundlagenforschung betreiben. Andererseits erfolgt der Wissenstransfer in die Industrie sehr rasch, weil die Mitarbeitenden direkten Zugang zur Infrastruktur von AVL haben. So konnten wir gemeinsam unsere Forschung im Bereich Sicherheit von autonomen cyberphysikalischen Systemen weit voranbringen“, erklärt Franz Wotawa.

Mihai Nica, Global Head ADAS, Automated Driving und Connectivity AVL, fügt hinzu: „In der sich rasant entwickelnden Welt des autonomen Fahrens setzt AVL auf innovative Testmethoden. Die Anwendung von AI-Gamification und ontologiebasierten Tests bietet die Möglichkeit, kritische Szenarien zu generieren und autonomes Fahren unter extremen und komplexen Bedingungen zu prüfen, die in der realen Welt nur schwer nachzubilden sind. Dies ist entscheidend, um die Zuverlässigkeit und Sicherheit der Technologie zu gewährleisten, und trägt dazu bei, das Vertrauen der Öffentlichkeit zu stärken. Dieses Vertrauen ist von entscheidender Bedeutung für die erfolgreiche Integration autonomer Fahrzeuge in unsere Verkehrsnetze der Zukunft.“ (Falko Schoklitsch)

Externer Link: www.tugraz.at

Zwei Dirigenten für eine chemische Reaktion

Presseaussendung der TU Wien vom 20.11.2023

Erstmals gelang es an der TU Wien, die Wirkungsweise sogenannter Promotoren einer katalytischen Reaktion in Echtzeit zu beobachten. Sie spielen in der Technik eine wichtige Rolle, galten aber bisher als wenig verstanden.

Katalysatoren braucht man für unzählige chemische Technologien – von der Abgasreinigung bis zur Herstellung wertvoller Chemikalien und Energieträger. Oft werden dabei auch noch winzige Spuren anderer Substanzen verwendet, die den Katalysator erst richtig effektiv machen. Man bezeichnet sie als „Promotoren“. Sie spielen in der Technik eine wichtige Rolle, sind aber notorisch schwer zu untersuchen.

Meist kann man nur durch Versuch und Irrtum herausfinden, welche Menge welcher Promotoren welche Wirkung hat. Nun gelang es an der TU Wien, die Rolle von Lanthan-Promotoren bei der Wasserstoff-Oxidation direkt zu beobachten. Die Rolle einzelner Lanthan-Atome wird mit High-Tech-Methoden sichtbar gemacht. Dabei zeigte sich: Zwei Oberflächenbereiche des Katalysators sind Taktgeber, ähnlich wie Dirigenten beim Orchester. Der Promotor spielt dabei eine entscheidende Rolle bei ihrer Interaktion – er steuert die Taktgeber. Das Ergebnis wurde nun im Fachjournal „Nature Communications“ publiziert.

Live bei der Reaktion zusehen

„Bei vielen chemischen Prozessen verwendet man Katalysatoren, die in Form winziger Nanopartikel vorliegen“, sagt Prof. Günther Rupprechter vom Institut für Materialchemie der TU Wien. Die Leistungsfähigkeit von Katalysatoren lässt sich leicht über Produktanalyse ermitteln, mikroskopische Einblicke gewinnt man dadurch aber nicht.

Das ist heute anders: Günther Rupprechter hat mit seinem Team über Jahre hinweg Methoden entwickelt, mit denen man sogar einzelne Nanopartikel direkt während der chemischen Reaktion beobachten kann. Dabei zeigt sich, wie sich die Aktivität an unterschiedlichen Stellen dieser Nanopartikel während des Reaktionsablaufs ändert.

„Wir verwenden Rhodium-Nanospitzen, die sich wie Nanopartikel verhalten“, sagt Günther Rupprechter. „Sie können zum Beispiel als Katalysator dienen, wenn man Wasserstoff und Sauerstoff zu Wassermolekülen vereint – das ist die Reaktion, die wir im Detail untersuchen.“

Pendeln zwischen „aktiv“ und „inaktiv“

Schon in den vergangenen Jahren fand das Team an der TU Wien heraus, dass unterschiedliche Abschnitte der Nanopartikel-Oberfläche unterschiedliches Verhalten zeigen: Sie oszillieren zwischen einem aktiven und einem inaktiven Zustand hin und her. Mal findet an einem bestimmten Punkt die gewünschte chemische Reaktion statt, dann wieder nicht.

Mit speziellen Mikroskopen konnte man nachweisen: Auf jedem Nanopartikel finden verschiedene solche Oszillationen statt – und sie alle beeinflussen einander. Bestimmte Abschnitte der Nanopartikel-Oberfläche, die oft nur eine Breite von wenigen Atomdurchmessern haben, spielen dabei eine bedeutsamere Rolle als andere: Sie sind besonders effiziente „Taktgeber“ und steuern sogar die chemischen Oszillationen anderer Abschnitte.

In dieses Taktgeben können nun Promotoren eingreifen – und genau das ließ sich nun mit den an der TU Wien entwickelten Methoden untersuchen. Wenn man Rhodium als Katalysator verwendet, kann Lanthan als Promotor für katalytische Reaktionen dienen. Daher platzierte man einzelne Lanthan-Atome auf der winzigen Oberfläche eines Rhodium-Nanopartikels. Ein und derselbe Partikel konnte dadurch einmal mit und einmal ohne Promotor vermessen werden. So kann man im Detail sehen, welchen Effekt einzelne Lanthan-Atome auf den Ablauf der chemischen Reaktion haben.

Mit Lanthan ist alles anders

Maximilian Raab, Johannes Zeininger und Carla Weigl haben die Experimente durchgeführt. „Der Unterschied ist enorm“, sagt Maximilian Raab. „Ein Lanthan-Atom kann Sauerstoff binden, und das ändert die Dynamik der katalytischen Reaktion.“ Durch die winzige Menge Lanthan wird die Kopplung zwischen den unterschiedlichen Bereichen des Nanopartikels verändert.

„Das Lanthan kann bestimmte Taktgeber selektiv ausschalten“, erklärt Johannes Zeininger: „Stellen wir uns vor, ein Orchester hat zwei Dirigenten – da werden wir ziemlich komplexe Musik zu hören bekommen. Der Promotor sorgt dafür, dass es nur noch einen Taktgeber gibt, dadurch wird die Situation einfacher und geordneter.“

Zusätzlich zu den Messungen entwickelte das Team, weiter verstärkt durch Alexander Genest und Yuri Suchorski, auch ein mathematisches Modell, mit dem man die Kopplungen zwischen den einzelnen Bereichen des Nanopartikels simulieren kann. So ergibt sich eine neue leistungsfähige Herangehensweise, chemische Katalyse viel präziser als bisher zu beschreiben: Nicht nur auf Basis von Input und Output, sondern in einem komplexen Modell, das berücksichtigt, wie unterschiedliche Bereiche des Katalysators zwischen Aktivität und Inaktivität hin und her wechseln und sich dabei – gesteuert von Promotoren – gegenseitig beeinflussen.

Die Arbeiten wurden vom FWF gefördert (P32772-N und SFB TACO F81-P08). (Florian Aigner)

Originalpublikation:
M. Raab et al.: Lanthanum modulated reaction pacemakers on a single catalytic nanoparticle; Nature Communications, 14, 7186 (2023)

Externer Link: www.tuwien.at