Hilfe, mein Auto wurde gehackt!

Presseaussendung der TU Wien vom 09.12.2014

Je mehr Computertechnik im Auto eingebaut ist, umso wichtiger werden Fragen der Softwaresicherheit. An der TU Wien arbeitet man an Autos, die Manipulationen selbst erkennen.

Kein anderes Gerät in unserem Alltag ist so komplex wie ein Auto. Bis zu hundert Minicomputer sind in modernen Fahrzeugen verbaut. Dadurch steigt allerdings auch die Gefahr, dass die Software manipuliert wird. Mit recht einfachen Mitteln kann man heute über die Software Einfluss auf das Fahrverhalten des Autos nehmen. Armin Wasicek von der TU Wien entwickelt Strategien, unberechtigte Manipulationen an der Fahrzeugsoftware zu erkennen und zu verhindern. Durch die eigene Sensorik soll das Auto automatisch bemerken, wenn etwas nicht stimmt.

Das Computernetzwerk im Auto

Ungefähr hundert Millionen Zeilen Computercode sind in einem modernen Auto enthalten – und wenn sich bald tatsächlich das selbstfahrende Auto durchsetzen sollte, wird diese Menge noch einmal drastisch anwachsen. „Sensoren im Auto erfassen ständig Daten, die über ein Computernetzwerk an die Steuerung geleitet werden. Die sorgt dafür, dass der Antrieb rund läuft“, erklärt Armin Wasicek.

Wenn man diese Steuerung gezielt manipuliert oder zusätzliche Recheneinheiten einbaut, lassen sich vielleicht in manchen Fahrsituationen ein paar PS mehr Motorleistung herausholen. Man bezeichnet das als „Chip-Tuning“. Es kann auch passieren, dass bei einer Reparatur ganz ohne Wissen des Fahrzeugbesitzers die Software durch den Einbau gefälschter Komponenten verändert wird.

„Die Manipulation der Fahrzeugsoftware kann aber auch dazu führen, dass der Verschleiß mancher Bauteile beschleunigt wird, oder einzelne Komponenten vielleicht sogar in wichtigen Verkehrssituationen ganz versagen“, erklärt Armin Wasicek. Schon aus Sicherheits- und Gewährleistungsgründen ist es daher wichtig, die Software zu schützen. Wasicek arbeitet am Institut für Technische Informatik der TU Wien, derzeit befindet er sich auf einem Forschungsaufenthalt an der University of California in Berkeley.

Sicherheit durch Selbstdiagnose

„Wir verfolgen zwei Strategien, um Manipulationen an der Software von Fahrzeugen zu unterbinden“, erklärt Armin Wasicek. „Zum einen entwickeln wir Authentifizierungssysteme, wie man sie auch in anderen Computersystemen nutzt. Zusätzlich arbeiten wir aber auch an einem System, das ungewöhnliches Verhalten am Auto von selbst erkennt.“

Das Intrusion-Detection-System untersucht nicht nur, ob im Computernetzwerk des Autos merkwürdige Dinge vor sich gehen, es interpretiert auch das Fahrverhalten. Schon bei der Entwicklung des Autos lernt die Software, welches Verhalten in welchen Situationen normal ist und später kann es die tatsächlich gemessenen Parameter damit vergleichen. „Wir betrachten die Software und das physische Verhalten des Fahrzeuges gemeinsam, man spricht daher von Cyber-Physical Systems“, sagt Wasicek. Ähnlich wie wir Menschen eine Muskelverspannung ganz automatisch erkennen, weil wir uns nicht bewegen können wie sonst, soll in Zukunft auch ein Auto Probleme am eigenen physischen Verhalten diagnostizieren.

Fahrzeughersteller haben auch ein Interesse daran, Daten verschiedener Fahrzeuge zu erheben und in großen Rechenzentren zu vergleichen. „Vernetzte Autos werden einer der nächsten ganz großen Schritte in der Fahrzeugtechnik sein“, ist Armin Wasicek überzeugt. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Sichere Häfen durch Mobilfunk-Radar

Presseinformation (Forschung Kompakt) der Fraunhofer-Gesellschaft vom 01.12.2014

Viele Küstengebiete und Häfen sind kaum gegen Terrorangriffe gesichert. Mit einem neuen Sensorsystem, das Echos von Mobilfunkmasten nutzt, lassen sich künftig selbst kleine Boote von Angreifern schnell aufspüren. Dieses Mobilfunk-Radar schützt auch Flugzeuge vor Kollisionen mit Windrädern.

Flughäfen werden heute streng überwacht, anders als viele Küsten- und Hafenstädte. Denn nicht überall gibt es Radaranlagen, die kleine Boote erfassen können. Für Terroristen wäre es ein Leichtes, sich den Küsten mit Speedbooten zu nähern, um Sprengstoff an Land zu bringen. Forscher vom Bonner Fraunhofer-Institut für Kommunikation, Informationsverarbeitung und Ergonomie FKIE entwickelten ein Antennensystem, mit dem sich küstennahe Meeresgebiete überwachen lassen: die Passive Coherent Location (PCL). Dabei nutzen sie die kontinuierlich ausgestrahlten Funksignale von Mobilfunksendemasten, um verdächtige Boote zu entdecken und durch Fusion mit elektrooptischen oder Infrarot-Systemen zu klassifizieren. Dazu gehören auch Schnellboote, mit denen sich Piraten Frachtschiffen nähern.

Die Funktionsweise des neuen Verfahrens ähnelt der von Radaranlagen. Diese senden elektromagnetische Signale und fangen das von Objekten zurückgestrahlte Echo auf. Entsprechend fängt die PCL-Antenne die von Objekten reflektierte Mobilfunkstrahlung auf, um Boote zu detektieren. Doch im Vergleich zu einer Radaranlage ist die Verwertung von Mobilfunksignalen deutlich komplexer. Eine Radarantenne sendet eigene wohl definierte Signale in einem begrenzten Sektor aus. Echos lassen sich leicht deuten. Der neue Sensor hingegen nutzt Mobilfunksignale, die aus verschiedenen Richtungen von verschiedenen Basisstationen ausgesendet werden. Er empfängt einen chaotischen Echomix, aus dem Objekte mühsam herausgerechnet werden müssen. »Ein Problem besteht darin, dass unser Sensorsystem zunächst die starken Signale der Mobilfunkstationen wahrnimmt«, sagt Reda Zemmari, Projektleiter am FKIE. »Die von Booten auf dem Wasser zurückgestrahlten Echos sind sehr viel schwächer.«

Mobiles System ist flexibel einsetzbar

Die Forscher mussten daher Algorithmen entwickeln, die diese Schwächen ausgleichen. So ist die Software unter anderem in der Lage, die starken, direkt von den Mobilfunkmasten eintreffenden Funksignale zu unterdrücken. »Von Vorteil ist«, sagt Zemmari, »dass verschiedene Mobilfunkmasten mit unterschiedlichen Frequenzen senden«. Damit kann die Software die verschiedenen Signale und Echos besser voneinander unterscheiden. Darüber hinaus erkennt das System fahrende Boote anhand ihrer Bewegung und der dadurch bewirkten Frequenzverschiebungen. »Unser System überprüft dabei permanent, ob es die Signale richtig zuordnet und die Bewegung des Objekts richtig interpretiert«, sagt Zemmari. Bei Versuchen vor Eckernförde und vor Fehmarn ist es den Forschern bereits gelungen, nur wenige Meter lange Speedboote in einer Entfernung von vier Kilometern zu verfolgen. »Unsere Anlage kann auf einem kleinen Anhänger transportiert werden und ist damit flexibel einsetzbar«, sagt Zemmari. Einzige Voraussetzung: Die Gebiete müssen von Mobilfunkstationen abgedeckt sein. Der Wissenschaftler betont, dass das PCL-System keineswegs Daten von Mobilfunknutzern ausliest. »Wir verwenden ausschließlich das Betriebssignal der Sendestation, das keine Datenpakete von Kunden enthält.«

Die Technologie eignet sich nicht nur für die Terrorabwehr. Derzeit arbeiten die Forscher an einer Variante für Windräder. Hohe Windmasten müssen nachts mit Blinklichtern befeuert werden, damit Hubschrauber- und Flugzeugpiloten gewarnt sind. Das Blinken aber stört viele Menschen. Windräder sollen daher mit Flugzeugdetektoren ausgestattet werden, die die Lichter nur dann einschalten, wenn sich ein Flugzeug nähert. Zwar gibt es bereits Detektoren, die auf die Funksignale von Flugzeugen ansprechen. »Aber für den Fall, dass diese ausfallen, brauchen wir ein redundantes System – und dafür eignet sich die PCL-Technik sehr gut«, sagt Zemmari.

Externer Link: www.fraunhofer.de

Lithium-Luft-Batterien: Mechanismus zur gesteigerten Kapazität geklärt

Pressemitteilung der TU Graz vom 11.11.2014

Gemeinsamer Erfolg von TU Graz, St. Andrews, Oxford, Amiens und Collège de France

Lithium-Luft-Batterien speichern potentiell ein Vielfaches der Energie von Lithium-Ionen-Batterien. Sie gelten daher als deren vielversprechende Nachfolgerinnen und als die leistungsstarken Energieträger, nach denen die Automobilindustrie dringend sucht. Forscher der TU Graz haben nun in Zusammenarbeit mit den Universitäten St. Andrews, Oxford und Amiens sowie dem Collège de France den Entlademechanismus der „luftigen Superbatterie“ besser aufgeklärt: Die Art des Elektrolyten wirkt sich entscheidend auf die effektive Kapazität der Batterie aus. Die Erkenntnis wurde in der aktuellen Ausgabe von „Nature Chemistry“ publiziert.

Dank leichter Sauerstoff- statt schwerer metallischer Ionenstrukturen haben Lithium-Luft-Batterien im Gegensatz zu den mittlerweile recht verbreiteten Lithium-Ionen-Batterien eine potentiell vervielfachte Energiespeicherkapazität. Zudem kommt die „luftige Super-Batterie“ ohne teure und begrenzt verfügbare Übergangsmetalle wie Kobalt, Nickel oder Mangan aus. Die neue Batterietechnologie steckt zum Gutteil aber noch in den Kinderschuhen. Einen entscheidenden Aspekt hat Stefan Freunberger vom Institut für Chemische Technologie von Materialien der TU Graz gemeinsam mit Kollegen der Universitäten von St. Andrews, Oxford und Amiens sowie des Collège de France unter die Lupe genommen: „Wir haben den Entlademechanismus der Lithium-Luft-Batterie untersucht und gezeigt, welche Faktoren für die effektive Kapazität der Batterie verantwortlich sind“, fasst Freunberger zusammen.

Elektrolyt entscheidet Kapazität

Die Kapazität der Lithium-Luft-Batterie ist anders als bei jetzigen Batterien nicht fest bestimmt, sondern wird von mehreren Faktoren beeinflusst. Zentral ist der Elektrolyt, der die Ionen leitet. Der Sauerstoff in der entladenen Lithium-Luft-Batterie ist idealerweise in Form von Peroxid vorhanden, also in fester, unlöslicher Form. Die Zwischenstufe dorthin ist sogenanntes Superoxid. Je löslicher die Zwischenstufe während des Entlademechanismus ist, desto besser wirkt sich das auf die Kapazität der Batterie aus. „Wir haben herausgefunden, dass das ‚Rädchen‘, an dem man drehen muss, in der sogenannten Donorzahl des Elektrolyten liegt. Diese Zahl beschreibt die Bindungsstärke zwischen dem Lösungsmittel und den Kationen eines darin gelösten Salzes und bestimmt die Löslichkeit der Zwischenstufe“, erklärt Stefan Freunberger. Ein Elektrolyt mit hoher Donorzahl ist also der Schlüssel zur gesteigerten Kapazität der Lithium-Luft-Batterie. „Hohe Donarzahlen haben beispielsweise Sulfoxide oder Imidazol. Letzteres ist eine Stickstoffverbindung, die wir in unserer Untersuchung als Modellsubstanz verwendet haben“, so Freunberger.

Gerichtete Forschung statt „trial and error“

Damit ist das theoretische Gerüst der Lithium-Luft-Batterie noch fundierter. „Wir haben nun viele trial and error-Versuche aus dem Weg geschafft und wissen, wir müssen einen Elektrolyten mit möglichst hoher Donorzahl verwenden. Nun können wir die Lithium-Luft-Batterie zielgerichteter bis zu ihrer tatsächlichen Verwendung erforschen“, sagt Stefan Freunberger, der als nächstes die Herstellung eines Polymerelektrolyten mit hoher Donorzahl in Angriff nehmen wird.

Originalpublikation:
Lee Johnson, Chunmei Li, Zheng Liu, Yuhui Chen, Stefan A. Freunberger, Jean-Marie Tarascon, Praveen C. Ashok, Bavishna B. Praveen, Kishan Dholakia and Peter G. Bruce: The role of LiO2 solubility in O2 reduction in aprotic solvents and its consequences for Li-O2 batteries. Nature Chemistry, November 2014, DOI 10.1038/nchem.2101.

Externer Link: www.tugraz.at

Mit Gedanken Gene steuern

Medienmitteilung der ETH Zürich vom 11.11.2014

ETH-Forscher um Martin Fussenegger haben das erste Gen-Netzwerk entwickelt, das über Hirnströme in Gang gesetzt wird und je nach Gedanken unterschiedliche Mengen eines gewünschten Moleküls produziert. Pate stand ein Spiel, das ebenfalls Hirnströme abgreift, um damit einen Ball durch einen Hindernisparcours zu lenken.

Es klingt beinahe wie in der Weltraum-Saga «Star Wars», in der Meister Yoda dem jungen Luke Skywalker beibringt, wie man durch die Kraft der Gedanken den X-Wing Starfighter aus dem Sumpf birgt: Marc Folcher sowie weitere Forscherinnen und Forscher aus der Gruppe von Martin Fussenegger, Professor für Biotechnologie und Bioingenieurwissenschaften am Departement Biosysteme (D-BSSE) in Basel, haben eine neuartige Genregulationsmethode entwickelt, bei der Gedanken – respektive die spezifischen Hirnströme, die sie erzeugen – die Umsetzung von Genen in Proteine, in der Fachsprache Expression genannt, steuern.

«Es ist uns zum ersten Mal gelungen, menschliche Hirnströme abzugreifen, diese drahtlos an ein Gen-Netzwerk zu übertragen und die Expression eines Gens, je nach Art der Gedanken, zu regulieren. Die Kontrolle von Genexpression durch die Macht der Gedanken war ein Traum, den wir seit über einem Jahrzehnt verfolgen», sagt Fussenegger.

Eine Inspirationsquelle für das neue durch Gedanken kontrollierte Gen-Regelwerk war das Spiel «Mindflex». Dabei trägt ein Spieler eine Art Kopfhörer mit Sensor auf der Stirn, der die Hirnströme aufzeichnet. Das registrierte Elektroenzephalogramm (EEG) wird dann in die Spielumgebung übertragen. Dabei kontrolliert das EEG einen Ventilator, um so einen kleinen Ball durch einen Hindernisparcours zu lenken.

Drahtlose Übertragung auf Implantat

Das System, das die Basler Bioingenieure soeben in «Nature Communications» vorgestellt haben, besteht nun ebenfalls aus einem EEG-Kopfhörer. Die aufgefangenen Hirnströme werden ausgewertet und drahtlos via Bluetooth an einen Controller übertragen. Dieser steuert einen Feldgenerator, der ein elektromagnetisches Feld erzeugt, welches ein Implantat induktiv mit Strom versorgt.

Im Implantat geht danach buchstäblich ein Licht auf: Ein integriertes LED-Lämpchen, das Licht im Nah-Infrarotbereich abstrahlt, schaltet sich an und beleuchtet eine Kulturkammer mit genetisch veränderten Zellen. Sobald das Nah-IR-Licht die Zellen anstrahlt, beginnen diese mit der Herstellung des gewünschten Proteins.

Gedanke steuert Proteinmenge

Das Implantat wurde vorerst in Zellkulturen und in Mäusen getestet, gesteuert durch die Gedanken verschiedener Testpersonen. In ihren Tests arbeiteten die Forschenden mit SEAP, einem einfach nachzuweisenden menschlichen Modell-Eiweiss, das aus der Kulturkammer des Implantates in den Blutkreislauf der Maus diffundiert.

Um die Menge des freigesetzten Proteins zu regulieren, mussten sich die Testpersonen in drei verschiedene Gedankenzustände versetzen: Biofeedback, Meditation und Konzentration. Testpersonen, welche am Computer Minecraft spielten, sich also konzentrierten, induzierten mittlere SEAP-Werte im Blutkreislauf der Mäuse, während im Zustand völliger Entspannung, also bei Meditation, sehr hohe SEAP-Blutwerte in den Versuchstieren erreicht wurden. Beim Bio-Feedback beobachteten die Testpersonen das LED-Licht des Implantats im Körper der Maus und konnten durch diese visuelle Rückkopplung ihrer Gedanken das LED-Licht bewusst möglichst lange ein- oder ausschalten. Dies wiederum schlug sich in wechselnden Mengen an SEAP im Blutkreislauf der Tiere nieder.

Neues lichtempfindliches Genkonstrukt

«Eine solche Gen-Steuerung ist komplett neu und in ihrer Einfachheit einzigartig», führt Fussenegger aus. Eine Neuentwicklung sei insbesondere das lichtempfindliche optogenetische Modul, welches auf Nah-Infrarotlicht reagiert. Dabei trifft das Licht auf ein modifiziertes lichtempfindliches Protein im Inneren von genveränderten Zellen und löst dort eine künstliche Signalkaskade aus, an deren Ende die Herstellung von SEAP steht. Nah-Infrarot wurde deshalb verwendet, weil es für menschliche Zellen weitgehend unschädlich ist, tief ins Gewebe einzudringen vermag und die Funktion des Implantates visuell verfolgt werden kann.

Das existierende System funktioniert im Mensch-Zellkultur- und Mensch-Maus-System einwandfrei. Fussenegger hofft, dass ein gedankengesteuertes Implantat dereinst helfen könnte, neurologische Erkrankungen wie chronische Kopf- und Rückenschmerzen sowie Epilepsie durch spezifische Hirnströme frühzeitig zu erkennen. Dadurch könnte die rechtzeitige Bildung gewisser Wirkstoffe in eingesetzten Implantaten ausgelöst und gesteuert werden.

Literaturhinweis:
Folcher M, Oesterle S, Zwicky K, Thekkottil T, Heymoz J, Hohmann M, Christen M, Daoud El-Baba M, Buchmann P, Fussenegger, M: Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant. Nature Communications, published online 11th November 2014. DOI: 10.1038/ncomms6392

Externer Link: www.ethz.ch