Saarbrücker Forscher entwickeln Wirkstoffkandidaten gegen Krankenhauskeim

Pressemitteilung der Universität des Saarlandes vom 14.12.2021

Die zunehmende Ausbreitung resistenter Keime führt dazu, dass ehemals hochwirksame Antibiotika zur Behandlung von Infektionserkrankungen oftmals nicht mehr erfolgreich eingesetzt werden können. Um dieser Entwicklung entgegenzuwirken, hat das Team um Prof. Anna Hirsch vom Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) neue Wirkstoffkandidaten entwickelt, die dazu in der Lage sind, einen der wichtigsten Krankenhauskeime unschädlich zu machen.

Ihre Ergebnisse haben die Forscher in der Fachzeitschrift Angewandte Chemie veröffentlicht.

Der Krankenhauskeim Pseudomonas aeruginosa verursacht eine Vielzahl von Infektionserkrankungen: von Lungenentzündungen über Wund-, Augen- und Harnwegsinfektionen bis hin zur Sepsis. Besonders durch P. aeruginosa ausgelöste Lungenentzündungen stellen eine große Gefahr für Mukoviszidose- und Covid-19 Patienten während der künstlichen Beatmung dar. Verschärft wird die Bedrohung durch diesen Keim dadurch, dass zunehmend Varianten auftreten, welche gegen mehrere der konventionell eingesetzten Antibiotika resistent sind. Derzeit liegen in der EU bei etwa zehn Prozent der Infektionen mit P. aeruginosa Resistenzen gegen drei oder mehr Antibiotikaklassen vor – Tendenz steigend.

Um dem resultierenden Bedarf nach neuen Strategien und Behandlungsmöglichkeiten gerecht zu werden, haben Forscherinnen und Forscher des HIPS, einem Standort des Helmholtz-Zentrums für Infektionsforschung (HZI) in Zusammenarbeit mit der Universität des Saarlandes, einen erfolgversprechenden Ansatz entwickelt. Hierbei wird eine der wichtigsten „Waffen“ von P. aeruginosa entschärft: ein Enzym namens LasB, das für den Abbau von menschlichem Gewebe verantwortlich ist und es dem Keim damit ermöglicht, besser den Ort der Infektion zu erreichen und sich dort einzunisten.

Wirkstoffe dieser Art werden auch als „Pathoblocker“ bezeichnet, da sie die Bakterien im Gegensatz zu Antibiotika nicht abtöten, sondern lediglich deren krankmachende Eigenschaften blockieren. Dies bietet den Vorteil, dass für den Menschen ungefährliche Bakterien nicht in Mitleidenschaft gezogen werden und es weniger häufig zur Entstehung von Resistenzen kommt. Im konkreten Fall kommt eine neu entwickelte Klasse von Wirkstoffen zum Einsatz, die direkt an LasB binden und dieses somit inaktivieren. Anna Hirsch, Leiterin der Abteilung Wirkstoffdesign und Optimierung am HIPS, sagt: „Da uns die dreidimensionale Molekülstruktur von LasB aus einer früheren Studie bestens bekannt war, konnten wir unsere Moleküle so entwerfen, dass sie bestmöglich zu ihrem Zielprotein passen und dieses effizient und spezifisch inaktivieren können. Das Ergebnis ist eine Reihe an Wirkstoffkandidaten, die dazu in der Lage sind, LasB zwölfmal besser zu binden als bisherige Kandidaten. Das ist ein ausgezeichneter Ausgangspunkt für die weitere Entwicklung hin zum fertigen Medikament.“ Dass die entwickelten Moleküle das Potenzial haben, den Wirtsorganismus vor dem schädlichen Effekt von LasB zu schützen, zeigen erste Ergebnisse aus einem Modell mit Galleria mellonella-Larven. Kommen die Larven in Kontakt mit LasB, so überleben nur rund zehn Prozent. Unter dem Einfluss der Wirkstoffe aus dem Labor von Anna Hirsch steigt dieser Wert auf über 60 Prozent.

Neben dem Wirkprinzip der entwickelten Substanzen handelt es sich auch bei deren Optimierung um einen innovativen Ansatz. „Üblicherweise beginnt man beim Design solcher Inhibitoren mit sehr kleinen Molekülen und erweitert diese dann schrittweise“, sagt die Erstautorin der Studie, Cansu Kaya. „Bei der Analyse des Bindeverhaltens früherer Kandidaten ist uns aufgefallen, dass manchmal zwei dieser Moleküle gleichzeitig an LasB binden. Inspiriert von dieser Beobachtung, haben wir die beiden Fragmente anschließend so miteinander verknüpft, dass ihre räumliche Ausrichtung zueinander nicht beeinflusst wird. Diese als fragment linking bezeichnete Methode ist deutlich komplizierter als konventionelle Ansätze, bietet aber im Erfolgsfall einen deutlich höheren Aktivitätsgewinn in sehr kurzer Zeit. Wir hoffen, dass unsere Methode in Zukunft auch verwendet werden kann, um die Entwicklung von Wirkstoffen gegen andere Krankheiten zu beschleunigen.“

Prof. Rolf Müller, Geschäftsführender Direktor des HIPS und Leiter der Abteilung Mikrobielle Naturstoffe, sieht den entwickelten Ansatz als vielversprechende Ergänzung zur Entwicklung neuer Antibiotika: „Leider ist die Entwicklung neuer Antibiotika sehr langwierig, teuer und wird nur noch von wenigen Pharmafirmen unterstützt. Die entwickelten Substanzen bieten uns einen alternativen Ansatz, um das Problem der antimikrobiellen Resistenz angehen zu können. Da sich resistente Keime auch in Zukunft immer mehr ausbreiten werden, sind solche Wirkstoffkandidaten von unschätzbarem Wert.“

In Folgestudien sollen die beschriebenen Substanzen nun weiterentwickelt und für ihre Anwendung am Menschen optimiert werden. Bei diesem Vorhaben wird Anna Hirsch von der US-amerikanischen Förderorganisation CARB-X unterstützt: Diese fördert die Arbeiten auf diesem Gebiet seit Ende 2020 mit Fördergeldern in Höhe von 1,46 Millionen Euro.

Originalpublikation:
Kaya C, Walter I, Yahiaoui S, Sikandar A, Alhayek A, Konstantinović J, Kany A, Haupenthal J, Köhnke J, Hartmann R & Hirsch A: Substrate-Inspired Fragment Merging and Growing Affords Efficacious LasB Inhibitors. Angewandte Chemie, 2021, DOI: 10.1002/anie.202112295

Externer Link: www.uni-saarland.de

Eigenentwickelter Impfstoff gegen SARS-CoV-2 zeigt starke Immunantwort

Pressemitteilung der Universität Tübingen vom 24.11.2021

Ergebnisse der Phase-I-Studie in Fachzeitschrift Nature publiziert

Am Universitätsklinikum Tübingen wurde im November 2020 unter Leitung von Prof. Dr. Juliane Walz in der KKE Translationale Immunologie der Medizinischen Klinik (Ärztlicher Direktor Prof. Dr. Helmut Salih) die klinische Erprobung eines eigenentwickelten Impfstoffs (CoVac-1) gegen SARS-CoV-2 begonnen. Nun liegen die Ergebnisse der Phase-I-Studie vor und belegen eine potente Aktivierung der T-Zell-Antwort gegen das Coronavirus. Die Ergebnisse sind aktuell in der renommierten Fachzeitschrift Nature publiziert. Derzeitig befindet sich die Studie in der zweiten Phase. Ziel ist, in Patienten und Patientinnen mit Antikörpermangel eine breite und starke T-Zell-vermittelte Immunantwort gegen SARS-CoV-2 zu induzieren, um so schwere Covid-19-Krankheitsverläufe zu verhindern.

T-Zellen spielen eine bedeutende Rolle bei der Covid-19-Erkrankung. Das konnte das Forschungsteam um Prof. Walz, Leiterin der klinischen Studie, bereits in mehreren wissenschaftlichen Publikationen belegen. Im Rahmen dieser Forschungsarbeiten wurden im Blut von Personen mit überstandener Covid-19-Erkrankung diejenigen Peptide identifiziert, die für eine Erkennung und Langzeitschutz durch T-Zellen speziell beim SARS-CoV-2-Virus von Bedeutung sind. „Genau die Peptide, die eine bedeutende Rolle bei der Langzeitimmunität nach durchgemachter SARS-CoV-2-Infektion spielen, werden nun in unserem CoVac-1 Impfstoff eingesetzt“, erklärt Juliane Walz. Als Peptide werden kurze Eiweiße bezeichnet, die auf der Oberfläche von Tumorzellen, aber auch auf Virus befallenen Zellen dem Immunsystem und hier speziell den T-Zellen präsentiert werden. Dies ermöglicht dem Immunsystem, „fremde“ und infizierte Zellen zu erkennen und diese zu eliminieren. Die Idee für den Impfstoff kommt aus der Krebsimmuntherapie, einem der Hauptforschungsschwerpunkte der Tübinger Immunologen.

Ergebnisse der Phase-I-Studie

CoVac-1 wurde in einer klinischen Phase-I-Studie in gesunden Probanden und Probandinnen zwischen 18 und 80 Jahre eingesetzt. Hier konnte bei guter Verträglichkeit eine äußerst potente Aktivierung der T-Zell-Antwort gegen SARS-CoV-2 belegt werden.

Insgesamt wurden 36 Probandinnen und Probanden im Rahmen der Studie einmalig geimpft. Bei wenigen Teilnehmenden wurden leichte Nebenwirkungen wie Kopfschmerzen und Müdigkeit beobachtet, schwerwiegende Nebenwirkungen traten nicht auf. Bei allen Probandinnen und Probanden entwickelte sich an der Impfstelle eine lokale Verhärtung. „Diese Lokalreaktion wird für unseren Impfstoff erwartet und gewünscht. Sie ist Ausdruck der Bildung eines Depots an der Impfstelle, das einen schnellen Abbau des Impfstoffs verhindert und so eine langanhaltende Immunreaktion ermöglicht“, erklärt Dr. Jonas Heitmann, einer der Erstautoren der Studie.

Bei allen Studienteilnehmenden lag vier Wochen nach der Impfung die gewünschte breite und starke T-Zell-Immunantwort gegen SARS-CoV-2 vor. In ersten Folgeuntersuchungen blieben diese Immunantworten in unveränderter Stärke bestehen. Darüber hinaus sind die durch CoVac-1 aktivierten T-Zell-Antworten deutlich stärker ausgeprägt als die bei Genesenen nach natürlicher Infektion und auch potenter als die T-Zell-Immunität, die durch zugelassene mRNA- oder Vektorimpfstoffe erzeugt wird. Anders als bei den bislang zugelassenen Impfstoffen richtet sich die CoVac-1-induzierte T-Zell-Immunität nicht nur gegen das Spike Protein, sondern gegen verschiedene Virusbestandteile. Die Wirksamkeit des Impfstoffes wird durch keine der bekannten SARS-CoV-2-Varianten negativ beeinflusst.

Eigene Impfstoffentwicklung, Herstellung und Erprobung

CoVac-1 wird im Wirkstoffpeptidlabor und der sogenannten GMP-Einheit des Universitätsklinikums und der Medizinischen Fakultät Tübingen hergestellt. Auch hier wird auf die langjährige Erfahrung und Expertise bei der Produktion von Impfstoffen für Krebserkrankte zurückgegriffen. Die klinische Evaluation des Impfstoffs erfolgt in der KKE Translationale Immunologie, einer deutschlandweit einzigartigen Einrichtung im Department Innere Medizin des Universitätsklinikums. Diese wurde etabliert, um innovative Immuntherapiekonzepte möglichst rasch in ersten klinischen Studien erproben zu können, damit Patienten und Patientinnen schnellstmöglich von neuen Erkenntnissen der Forschung profitieren.

Weitere Entwicklung von CoVac-1

Auf Grundlage dieser Studienergebnisse wurde bereits im Juni die Phase-II-Studie gestartet, die CoVac-1 in Patienten und Patientinnen mit angeborenem oder erworbenem Immunglobulinmangel untersucht. Hierzu gehören beispielsweise Leukämie- oder Lymphompatientinnen und -patienten, die auf Grund ihrer Erkrankung oder einer Therapie keine ausreichende durch antikörpervermittelte Immunität aufbauen können.

Externer Link: www.uni-tuebingen.de

Wenn die Zeit vorwärts und zugleich rückwärts fließt

Pressemeldung der Universität Wien vom 26.11.2021

Zeitumkehr in der Quantenmechanik: Systeme können sich simultan in zwei – auch entgegengesetzte – Richtungen entwickeln

Ein Team von Physiker*innen der Universität Wien und der Österreichischen Akademie der Wissenschaften gemeinsam mit Wissenschafter*innen aus Bristol und von den Balearen hat gezeigt, wie sich Quantensysteme gleichzeitig entlang zweier entgegengesetzter Zeitpfeile (vorwärts und rückwärts in der Zeit) entwickeln können. Die Studie wurde in der neuesten Ausgabe der Zeitschrift Communications Physics veröffentlicht.

Vorwärts und rückwärts fließende Zeitflüsse

Bei der Betrachtung von Himmelsbewegungen entsteht oft ein Gefühl der Ewigkeit, das uns zu der Frage verleiten könnte, ob die Zeit wirklich existiert. Blicken wir hingegen auf unser tägliches Leben, werden alle Zweifel ausgeräumt: Die Zeit existiert und bewegt sich vorwärts. Diese scheinbare Gewissheit ergibt sich aus der Tatsache, dass die meisten makroskopischen physikalischen Phänomene immer nur in einer Richtung ablaufen können. Nehmen wir zum Beispiel die Abfolge unserer morgendlichen Routine: Würde man uns zeigen, wie unsere Zahnpasta von der Zahnbürste zurück in die Tube wandert, wüssten wir zweifelsfrei, dass man uns gerade eine Aufzeichnung unseres Tages im Rücklauf zeigt. In der Physik ist diese Neigung bestimmter Phänomene, sich nur in eine Richtung zu entwickeln, mit der Erzeugung von „Entropie“ verbunden, einer physikalischen Größe, die den Grad der Unordnung in einem System definiert. In der Natur neigen Prozesse dazu, sich spontan von Zuständen mit weniger Unordnung zu Zuständen mit mehr Unordnung zu entwickeln, und diese Tendenz kann zur Identifizierung eines Zeitpfeils verwendet werden. Wenn also ein Phänomen eine große Menge an Entropie erzeugt, ist die Beobachtung seiner zeitlichen Umkehrung so unwahrscheinlich, dass sie praktisch unmöglich ist. Wenn die erzeugte Entropie jedoch klein genug ist, besteht eine nicht zu vernachlässigende Wahrscheinlichkeit, dass die Zeitumkehr eines Phänomens auf natürliche Weise erfolgt. Denken wir an das Beispiel mit der Zahnpasta zurück: Wenn wir die Tube nur leicht zusammendrücken und nur ein sehr kleiner Teil der Zahnpasta herauskommt, wäre es gar nicht so unwahrscheinlich, dass diese durch die Dekompression der Tube wieder in diese zurück gesaugt wird. Wird die Tube hingegen stärker zusammengedrückt, breitet sich die Zahnpasta unumkehrbar aus, so dass man sich sehr viel mehr anstrengen muss, um die gesamte Zahnpasta wieder in die Tube zu bekommen.

Die Grenze zwischen „vorwärts“ und „rückwärts“ verschwimmt in der Quantenmechanik

Ein Team von Physiker*innen der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften unter Leitung von Časlav Brukner sowie Kolleg*innen aus Bristol und den Balearen hat diese Idee auf den Quantenbereich angewandt. Die Forschenden versuchten, dadurch ein tieferes Verständnis dafür zu erlangen, wie Zeit in diesem Regime fließt. Eine der Besonderheiten der Quantenwelt ist das Prinzip der Quantensuperposition, das besagt, dass, wenn zwei Zustände eines Quantensystems möglich sind, dieses System auch in beiden Zuständen zugleich sein kann. Blickt man auf das System zurück, das sich in die eine oder andere zeitliche Richtung entwickelt (die Zahnpasta, die aus der Tube kommt oder wieder in die Tube zurückwandert), so folgt daraus, dass sich Quantensysteme auch zugleich in beide zeitliche Richtungen entwickeln können. Obwohl dieser Gedanke in Bezug auf unsere alltägliche Erfahrung eher unsinnig erscheint, beruhen die Gesetze des Universums auf ihrer grundlegendsten Ebene auf quantenmechanischen Prinzipien. Dies wirft die Frage auf, warum wir in der Natur nie auf solche Überlagerungen von Zeitflüssen stoßen. „In unserer Arbeit haben wir die Entropie quantifiziert, die von einem System erzeugt wird, das sich in Quantensuperposition von Prozessen mit entgegengesetzten Zeitpfeilen entwickelt. Wir fanden heraus, dass dies meist dazu führt, dass das System auf eine genau definierte Zeitrichtung projiziert wird, die dem wahrscheinlichsten Prozess der beiden Prozesse entspricht“, erklärt Gonzalo Manzano, ein Mitautor der Studie. Und doch kann man, wenn Entropie nur in geringem Ausmaß im Spiel ist (z. B. wenn so wenig Zahnpasta aus der Tube gedrückt wird, dass man sehen kann, wie sie wieder in die Tube zurückgesaugt wird), physikalisch beobachten, welche Folgen es hat, wenn sich das System gleichzeitig in der Vorwärts- und in der Rückwärtsrichtung der Zeit entwickelt. Wie Giulia Rubino, Hauptautorin der Veröffentlichung, betont, „wird die Zeit zwar oft als kontinuierlich zunehmender Parameter behandelt, doch unsere Studie zeigt, dass die Gesetze, die den Zeitfluss in quantenmechanischen Zusammenhängen regeln, viel komplexer sind. Dies könnte darauf hindeuten, dass wir die Art und Weise, wie wir diese Größe dort darstellen, wo Quantengesetze eine entscheidende Rolle spielen, überdenken müssen.“

Originalpublikation:
Communications Physics, Quantum superposition of thermodynamic evolutions with opposing time’s arrows, G. Rubino, G. Manzano and C. Brukner. Communications Physics (2021).

Externer Link: www.univie.ac.at

Neuer Sensor kann immer kleinere Nanoteilchen erkennen

Presseinformation des KIT (Karlsruher Institut für Technologie) vom 04.11.2021

Neuartiger optischer Resonator bietet erstmals die Möglichkeit, die Bewegung von Nanoteilchen im Raum zu verfolgen

Nanoteilchen sind in unserer Umgebung allgegenwärtig: Viren in der Raumluft, Proteine im Körper, als Bausteine neuer Materialien etwa für die Elektronik oder in Oberflächenbeschichtungen. Wer die winzigen Partikel sichtbar machen will, hat ein Problem: Sie sind so klein, dass man sie unter einem optischen Mikroskop meist nicht sieht. Forschende am Karlsruher Institut für Technologie (KIT) haben einen Sensor entwickelt, mit dem sie Nanoteilchen nicht nur aufspüren, sondern auch ihre Beschaffenheit bestimmen und ihre räumliche Bewegung nachverfolgen können. Ihren extrem empfindlichen und sehr kompakten Detektor, einen neuartigen Fabry-Pérot Resonator, präsentieren sie jetzt in der Fachzeitschrift Nature Communications (DOI: 10.1038/s41467-021-26719-5).

Gängige Mikroskope erzeugen stark vergrößerte Bilder von kleinen Strukturen oder Objekten mit Hilfe von Licht. Weil die Nanoteilchen aufgrund ihrer Winzigkeit aber kaum Licht absorbieren oder streuen, bleiben sie unsichtbar. Optische Resonatoren hingegen verstärken die Wechselwirkung zwischen Licht und Nanoteilchen: Sie halten Licht auf kleinem Raum gefangen, indem es tausende Male zwischen zwei Spiegeln reflektiert wird. Befindet sich ein Nanoteilchen in dem gefangenen Lichtfeld, dann wechselwirkt das Nanoteilchen tausende Male mit dem Licht, so dass die Änderung der Lichtintensität messbar wird. „Weil das Lichtfeld an verschiedenen Stellen im Raum unterschiedliche Intensitäten hat, können wir Rückschlüsse auf die Position des Nanoteilchens im dreidimensionalen Raum ziehen“, sagt Dr. Larissa Kohler vom Physikalischen Institut am KIT.

Resonator macht Bewegungen der Nanoteilchen sichtbar

Und nicht nur das: „Wenn sich ein Nanoteilchen in Wasser befindet, stößt es mit den Wassermolekülen zusammen, welche sich aufgrund von thermischer Energie in willkürliche Richtungen bewegen. Durch die Stöße führt das Nanoteilchen eine Art Zitterbewegung aus. Auch diese Brownsche Bewegung können wir nun nachvollziehen“, so die Expertin. „Bislang konnte mit einem optischen Resonator nicht die räumliche Bewegung eines Nanoteilchens nachverfolgt werden, sondern man konnte nur sagen, dass sich das Teilchen im Lichtfeld befindet oder nicht“, erläutert Kohler. Obendrein eröffne der neuartige faserbasierte Fabry-Pérot Resonator, bei dem sich die hochreflektierenden Spiegel auf den Endflächen von Glasfasern befinden, die Möglichkeit, aus der dreidimensionalen Bewegung den hydrodynamischen Radius des Teilchens, also die Dicke der es umgebenden Hülle aus Wasser, abzuleiten. Das ist entscheidend, weil diese die Eigenschaften des Nanoteilchens verändert. „Zum Beispiel können aufgrund der Hydrathülle noch Nanoteilchen detektiert werden, die ohne diese Hülle zu klein wären“, sagt Kohler. Ebenso könnte die Hydrathülle um Proteine oder andere biologische Nanoteilchen einen Einfluss bei biologischen Vorgängen haben.

Sensor ermöglicht Einblicke in biologische Vorgänge

Einsatzmöglichkeiten für ihren Resonator sehen die Forschenden bei der zukünftigen Detektion der dreidimensionalen Bewegung mit hoher zeitlicher Auflösung und der Charakterisierung der optischen Eigenschaften von biologischen Nanoteilchen, wie zum Beispielen Proteinen, DNA-Origami oder Viren. Der Sensor könnte damit Einblicke in noch nicht verstandene biologische Vorgänge ermöglichen. (mex)

Originalpublikation:
Larissa Kohler, Matthias Mader, Christian Kern, Martin Wegener, David Hunger: Tracking Brownian motion in three dimensions and characterization of individual nanoparticles using a fiber-based high-finesse microcavity. Nature Communications, 2021. DOI: 10.1038/s41467-021-26719-5

Externer Link: www.kit.edu

Bakterien als Klima-Helden

Presseaussendung der TU Wien vom 17.11.2021

Um in Zukunft eine kohlenstoffneutrale Kreislaufwirtschaft zu etablieren, werden Technologien benötigt, die als Rohstoff CO2 verwenden. In Form von Formiat kann CO2 von bestimmten Bakterien verstoffwechselt werden.

Acetogene sind eine Gruppe von Bakterien, die Formiat verstoffwechseln können. Sie bilden beispielsweise Essigsäure – eine wichtige Basischemikalie. Manipuliert man diese Bakterien dahingehend, dass sie Ethanol oder Milchsäure produzieren, ließe sich eine umfassende Kreislaufwirtschaft für das Treibhausgas CO2 realisieren. Damit der Prozess nachhaltig ist, wird das CO2 direkt aus der Luft gewonnen und unter Verwendung von erneuerbarer Energie zu Formiat umgewandelt.

Um herauszufinden, wie genau sich Formiat durch das Acetobakterium woodii (kurz A. woodii) verwerten lässt, untersuchte ein Team um Stefan Pflügl vom Institut für Verfahrenstechnik, Umwelttechnik und technische Biowissenschaften der TU Wien, wie das Bakterium verschiedene Substrate – darunter auch Formiat – verstoffwechselt. Weiters schauten sich die Forschenden über ein metabolisches Modell an, wie sich A. woodii gentechnisch verändern ließe, um andere Substanzen als Essigsäure zu produzieren.

Kreislaufwirtschaft für CO2

„Die Wirtschaft der Zukunft muss kohlenstoffneutral sein“, fordert Stefan Pflügl. Da Kohlenstoff jedoch ein wichtiger Bestandteil vieler Produkte ist – wie beispielsweise Kraftstoff oder Plastik – sollte das vorhandene CO2 recycelt und in den Kreislauf zurückgeführt werden. Eine klimaneutrale Möglichkeit dazu ist, das CO2 aus der Luft zu fixieren und mithilfe erneuerbarer Energie in Formiat umzuwandeln. Diese Verbindung aus Kohlen-, Sauer- und Wasserstoff kann schließlich ein Grundbaustein der Bioökonomie sein. Vorteile von Formiat sind, dass es sich leicht transportieren lässt und flexibel für die Herstellung von Chemikalien und Treibstoffen verwendet werden kann. Die Herstellung dieser Stoffe kann mithilfe von acetogenen Bakterien erfolgen, die sich von Kohlenstoffverbindungen ernähren und daraus Essigsäure produzieren.

Formiatverwertung durch A. woodii

Um Acetogene für die Produktion von Rohstoffen zu nutzen, muss man deren Stoffwechsel und Physiologie verstehen. Zwar handelt es sich bei A. woodii um einen Modellorganismus, das heißt, das Bakterium wurde bereits umfangreich untersucht, doch wollte das Forschungsteam eine vergleichende Beobachtung durchführen. So untersuchten Stefan Pflügl und sein Team, wie sich Substrate wie Formiat, Wasserstoff, Kohlenmonoxid, Kohlendioxid oder Fruktose auf den Stoffwechsel von A. woodii auswirken.

„Der größte Unterschied, hervorgerufen durch die unterschiedlichen Substrate, besteht in der Energiemenge, die A. woodii gewinnt“, beobachtet Stefan Pflügl. Dies erklärt er wie folgt: „Acetogene sind wahre Überlebenskünstler, die auch Substrate wie CO, CO2 oder Formiat verstoffwechseln können. Dies ist darauf zurückzuführen, dass Acetogene den wahrscheinlich ältesten Stoffwechselweg für die CO2-Fixierung verwenden. So gelingt es ihnen auch, unter extremen Bedingungen und aus alternativen Nahrungsquellen genug Energie zum Überleben zu erzeugen.“

Damit sind Acetogene nicht nur dazu fähig, CO2 zu verwerten, auch gehen sie dabei sehr effizient vor. Folglich muss nur wenig Energie aufgewendet werden, um CO2 in Formiat umzuwandeln, das dann in die Basischemikalie Essigsäure umgewandelt wird.

Austausch Öl-basierter Produkte

Um das volle Potenzial von A. woodii auszuschöpfen, untersuchten die Forschenden außerdem, wie sich das Bakterium gentechnisch verändern lässt, um statt Essigsäure Ethanol oder Milchsäure zu produzieren. Während Ethanol die Basis für Kraftstoff bildet, lässt sich aus Milchsäure biologisch abbaubarer Kunststoff herstellen. Öl-basierte Stoffe könnten folglich durch nachhaltigere Alternativen ausgetauscht werden. „Dies wäre nicht nur im Sinne der Bioökonomie, auch könnten CO2 und Kohlenmonoxid, die bei der Verbrennung von Kraft- oder Kunststoff entsteht, wieder zum Ursprungsprodukt werden,“ stellt Stefan Pflügl in Aussicht.

Die Studie, die in der Fachzeitschrift „Metabolic Engineering“ erschienen ist, gibt somit Aufschlüsse über das, was Acetogene wie A. woodii unter bestimmten Bedingungen leisten können. Auf Basis der experimentellen Daten und unter Verwendung eines Modells entwickelten die Forschenden außerdem Strategien, wie sich A. woodii gentechnisch manipulieren und für die Produktion weiterer Stoffe nutzen lässt. (Sarah Link)

Originalpublikation:
Neuendorf, C. S., Vignolle, G. A., Derntl, C., Tomin, T., Novak, K., Mach, R. L., … & Pflügl, S. (2021). A quantitative metabolic analysis reveals Acetobacterium woodii as a flexible and robust host for formate-based bioproduction. Metabolic Engineering, 68, 68-85.

Externer Link: www.tuwien.at