Künstliches Nano-NPC-Modell imitiert selektives Transportsystem von Zellen

Medienmitteilung der Universität Basel vom 20.06.2011

Zelluläre Maschinen zeigen eine faszinierende Raffinesse in ihrer Funktion, die auch technologisch gesehen unerreicht ist. Der Forschungsgruppe von Prof. Roderick Lim, Argovia-Professor am Biozentrum und am Swiss Nanoscience Institute der Universität Basel, ist es in Zusammenarbeit mit Forschern der Technischen Universität Delft gelungen, ein Nano-Modell des biologischen Kernporenkomplexes (NPC) und dessen Funktionsweise künstlich nachzustellen. Damit konnten sie den selektiven Transport von Proteinen zwischen Zytoplasma und Zellkern einer Zelle nachbilden. Lims Gruppe konnte zudem zeigen, wie sich die Vorgehensweise des NPC-Transportsystems chemisch imitieren lässt, um Biomoleküle aus biologischen Flüssigkeiten nanometer-genau zu sortieren. Die Ergebnisse sind in der aktuellen Ausgabe des Journals Nature Nanotechnology sowie im Journal ACS Nano publiziert.

Die Relevanz des biologischen Kernporenkomplexes (nuclear pore complex, NPC) liegt in der Art, wie er den Transport von Proteinen in und aus dem Zellkern regelt. NPCs selektieren wie eine Art Schleuse aktiv Moleküle für den Transport und erleichtern so den schnellen Austausch von bestimmten Proteinen mit höchster Präzision und in einer hochselektiven Art und Weise. Jede im Durchmesser nur 50nm grosse «NPC-Schleuse» öffnet oder schliesst sich dabei, je nachdem, ob ein Stoff als „molekularer Gast“ erkannt wird oder nicht. „NPCs lassen sich mit den Löchern in einem Kaffeefilter vergleichen, wenn der Filter so funktionieren würde, dass er die Bestandteile des Kaffees erkennt und nur Hochwertiges durchlässt“, so Lim.

Rätsel um den NPC-Mechanismus

Da es bislang keine technische Vorrichtung gibt, die das NPC-Schleusensystem nachstellt, ist dessen genaue Funktionsweise für Forscher ein langjähriges Rätsel geblieben. Bereits 2006 schlug Lim eine Möglichkeit vor, dem Rätsel näher zu kommen, nämlich die NPC-Proteine mit technisch hergestellten Nanostrukturen und Nanoporen zu verbinden. Und jetzt, rund fünf Jahre später, ist Lims Gruppe in Zusammenarbeit mit der Forschergruppe von Prof. Cees Dekker von der Technischen Universität Delft der Nachweis gelungen, dass ein nachgebautes NPC-Modell tatsächlich mit der Leistung und Präzision eines natürlichen NPCs in der Zelle mithalten kann: Sowohl die Genauigkeit der molekularen Selektivität als auch die Transportzeit innerhalb von Millisekunden entsprechen der eines biologischen NPCs. Diese in «Nature Nanotechnology» gezeigten Ergebnisse ermöglichen wichtige neue Ansätze für die Forschung, um die Grundprinzipien der NPC-Funktion auf der Ebene einzelner Moleküle zukünftig genauer untersuchen und verstehen zu können.

Biologische Grundlagen als Wegweise für zukünftige Anwendungen

Um ihre Erkenntnisse weiter zu führen, zeigen die Forschenden um Lim in dem Journal ACS Nano, wie sie die Prinzipien der NPC-Funktionalität anwenden, um spezifische Proteine aus natürlicher biologischer Umgebung selektiv und mit molekularer Präzision an ihr Ziel zu befördern. Dabei wurden die Bausteine der natürlichen NPC-Schleuse durch synthetische Polymere ersetzt. Das Ersetzen der biologischen durch künstliche Bausteine ist insofern von Bedeutung, als hochkomplexe technologisch-molekulare Transportsysteme eines Tages genauso elegant aufeinander abgestimmt werden könnten, wie es in einer lebenden Zelle bereits der Fall ist.

Originalartikel:

Kowalczyk et al.
Single-molecule transport across an individual biomimetic nuclear pore complex.
Nature Nanotechnology, Advance Online Publication, DOI: 10.1038/Nnano.2011.88

Hyotyla et al.
Synthetic Protein Targeting by the Intrinsic Biorecognition Functionality of Poly(ethylene glycol) Using PEG Antibodies as Biohybrid Molecular Adaptors
ACS Nano, DOI: 10.1021/nn201327y

Externer Link: www.unibas.ch

„Quanten-Magie“ kommt ohne „spukhafte Fernwirkung“ aus

Pressemeldung der Universität Wien vom 24.06.2011

Die quantenmechanische Verschränkung ist das Herzstück des berühmten Quanten-Teleportationsexperiments. Albert Einstein bezeichnete sie als „spukhafte Fernwirkung“. Ein Forschungsteam der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften um Anton Zeilinger verwendete ein System, das Verschränkung nicht zulässt und fand doch Resultate, die nicht auf klassische Weise interpretiert werden können. Das Team publizierte dazu in der aktuellen Ausgabe der renommierten Fachzeitschrift „Nature“.

Asher Peres, einer der Pioniere der Quanteninformationstheorie, meinte in einem Brief an seine Kollegin Dagmar Bruß scherzhaft: „Verschränkung ist ein Trick, den ‚Quantenmagier‘ einsetzen, um Phänomene zu erzeugen, die von ‚klassischen Magiern‘ nicht kopiert werden können.“ Wenn zwei Teilchen miteinander verschränkt sind, beeinflussen Messungen, die an einem der beiden Teilchen vorgenommen werden, das andere Teilchen augenblicklich, gleichgültig wie weit entfernt sich die beiden Teilchen voneinander befinden. Was aber, wenn im Experiment ein System herangezogen wird, das Verschränkung gar nicht zulässt? Sind die „Quanten-Magier“ gegenüber den anderen noch immer im Vorteil?

Quantenphysik fern von Spuk und Zauberei

Dieser Frage gingen Forscher der Fakultät für Physik der Universität Wien und des Instituts für Quantenoptik und Quanteninformation der Österreichischen Akademie der Wissenschaften um Anton Zeilinger in einem Experiment nach. Sie verwendeten ein sogenanntes Qutrit – ein Quantensystem aus einem einzelnen Photon, das drei voneinander unterscheidbare Zustände einnehmen kann. „Damit konnten wir zeigen, dass quantenmechanische Messungen auch dann nicht auf klassische Weise interpretiert werden können, wenn das Phänomen der Verschränkung nicht beteiligt ist“, erklärt Radek Lapkiewicz, Erstautor der Studie. Die Ergebnisse beziehen sich auf die theoretischen Vorhersagen von John Stewart Bell, Simon B. Kochen und Ernst Specker.

Quantenwelt versus Alltagserfahrung

Die Quantenphysik unterscheidet sich erheblich von dem, was wir in unserer Alltagswelt wahrnehmen, erfahren und als „klassische Physik“ bezeichnen. Betrachten wir beispielsweise einen Globus von nur einem Standpunkt aus, dann können wir jeweils nur eine Hemisphäre zu einem bestimmten Zeitpunkt sehen. Drehen wir den Globus einmal um die eigene Achse, können wir unter der Annahme, dass die Form der Kontinente gleich bleibt, auch wenn wir sie gerade nicht sehen, letztendlich ein aussagekräftiges und „wahres“ Bild unserer Erde konstruieren.

Mit unseren Erfahrungen und Annahmen der „klassischen Physik“ können wir also einem System Eigenschaften zuordnen, ohne dass Messungen erforderlich wären. Anders verhält es sich, wenn wir uns einen „Quantenglobus“ vorstellen. Im Gegensatz zum Globus, der sich aufgrund klassischer Annahmen von Eigenschaften wie ein Puzzle zusammenfügt, passen die Bilder beim ‚Quantenglobus‘ nicht zusammen. Es ergibt sich aber auch kein ‚zufälliges‘ Muster, vielmehr kann bereits im Voraus gesagt werden, um wie viel die einzelnen Teile nach der Beobachtung voneinander differieren.

Publikation:
Experimental non-classicality of an indivisible quantum system
Radek Lapkiewicz, Peizhe Li, Christoph Schaeff, Nathan K. Langford, Sven Ramelow, Marcin Wiesniak and Anton Zeilinger
Nature, 23. Juni 2011 | DOI: 10.1038/nature10119

Externer Link: www.univie.ac.at

Kraftwerke für die Flugzeughülle

Presseaussendung der TU Wien vom 14.06.2011

Wie ein Nervensystem sollen Netze von Sensoren in Zukunft Flugzeuge durchziehen – und durch eine Entwicklung der EADS Deutschland GmbH in Kooperation mit der Technischen Universität (TU) Wien ist dazu keine äußere Stromversorgung mehr nötig.

Ein Flugzeug regelmäßig rundherum zu warten ist aufwändig. Viel einfacher ist es, wenn das Flugzeug von sich aus meldet, wo Wartung nötig ist. Eine denkbar gute Lösung ist ein Sensor-System, das sich dabei auch noch selbst mit Strom versorgt und somit von Kabeln unabhängig ist – und genau das wurde nun von der EADS Deutschland GmbH in Kooperation mit dem Institut für Sensor- und Aktuatorsysteme der TU Wien entwickelt. Für jeden einzelnen Sensor erzeugt ein thermoelektrischer Generator mit einem kleinen wärmespeichernden Wasserbehälter Strom – und zwar einfach aus dem Temperaturunterschied zwischen der bodennahen Luft und der eisigen Kälte in großer Flughöhe. Die neue Sensortechnik könnte nicht nur die Wartung vereinfachen, sondern auch den Flugkomfort für die Passagiere steigern.

Energieversorgung mit dem „Energie-Harvester-Modul“

Schon kleinere Kollisionen können leicht Schäden in der Flugzeugwand hervorrufen. Bei herkömmlichen Aluminiumflugzeugen entsteht eine Delle, und der Schaden ist sofort sichtbar. Bei modernen Kohlefasermaterialien ist das schwieriger. Feine, unsichtbare Risse können sich bilden, deren Erkennung in der Wartung aufwendig und kostenintensiv ist. Mit geeigneten Sensoren direkt an der Flugzeugwand ließe sich das aber gut überwachen. „Ein Problem bei den Sensoren ist die Energieversorgung: Hunderte Sensoren an der Flugzeugwand zu verkabeln ist kompliziert und teuer“, erklärt Professor Ulrich Schmid vom Institut für Sensor- und Aktuatorsysteme der TU Wien. Aus diesem Grund entwickelte er gemeinsam mit Dominik Samson und Professor Thomas Becker von der EADS Deutschland GmbH die Idee des „thermoelektrischen Energieharvesters“ als zentrales Herzstück und Energiequelle, um weder auf Kabel noch auf Batterien angewiesen zu sein.

Temperaturunterschiede liefern elektrischen Strom

Wenn ein Flugzeug in eine Höhe von tausenden Metern aufsteigt, kühlt die Außenwand ab. „Aus dem Temperaturunterschied zwischen innen und außen können wir mit einem thermoelektrischen Generator direkt die elektrische Energie gewinnen, die ein Sensorelement benötigt“, erklärt Dominik Samson. Im Energie-Harvester-Modul befindet sich ein Wasserreservoir, das die Bodenwärme eine Weile speichert. Wasser ist dafür besonders gut geeignet, weil es eine hohe Energiemenge in Form von Wärme aufnehmen kann. Der Innenbereich des Moduls mit dem Wasserreservoir steht über den thermoelektrischen Generator in Kontakt mit der kalten Außenhaut. Das somit am Generator erzeugte Temperaturgefälle wird dort direkt zur Erzeugung einer elektrischen Spannung genutzt. Bei der Landung ist es genau umgekehrt: Das Flugzeug wärmt sich an der bodennahen Luft wieder auf, innen ist das Modul noch kalt – und wieder kann Strom erzeugt werden.

Wenn gerade keine Thermospannung entsteht, etwa unmittelbar beim Start und bei der Landung, regelt eine ausgeklügelte Elektronik die Speicherung und Abgabe der elektrischen Energie. Sowohl Elektronik als auch Komponenten für die Stromerzeugung und Energiespeicher haben nur einen geringen Platzbedarf: Sie passen bequem auf eine Handfläche und können somit problemlos in die Flugzeughülle eingebaut werden. Die genaue Größe lässt sich je nach Anwendung und Energiebedarf anpassen.

Ohne Kabel, ohne Batterie

Die gemessenen Daten kann der Sensor per Funk weitergeben – das macht ihn vollständig unabhängig von Verkabelung. Durch den Verzicht auf Kabel spart man nicht nur Wartungszeit, man minimiert auch Fehlerquellen und reduziert das Gewicht des Flugzeuges. Bei einem Flug kann der Energie-Harvester eine elektrische Energie von acht bis zehn Milliwattstunden bereitstellen, was für einen drahtlosen Sensorknoten völlig ausreicht. „Ein Flugzeug hat eine Lebensdauer von etwa dreißig Jahren. Würde man die Sensoren mit Batterien betreiben, bräuchte man für jeden von ihnen in dieser Zeit insgesamt etwa hundert Batterien“, rechnet Dominik Samson vor. Das würde bei einer großen Anzahl von Sensoren nicht nur Wartungsaufwand, sondern auch eine unnötig große Menge an Müll verursachen.

Die Idee, durch Temperaturunterschiede am Flugzeug Strom zu erzeugen, ließe sich auch noch auf andere Bereiche ausweiten: Sensoren könnten überwachen, ob die Passagiere angeschnallt oder die Tische hochgeklappt sind, oder per Funk könnte durch Knopfdruck der Flugbegleiter gerufen werden – und das alles ohne teure und komplizierte Verkabelung, betrieben nur aus der Körperwärme der Passagiere selbst. „Der erste, wichtige Schritt zur Bereitstellung von ausreichend Energie ist getan – wir sind zuversichtlich, dass die kabellose Sensortechnologie bald in vielen Flugzeugen mitfliegen wird“, meint Ulrich Schmid. (Florian Aigner)

Externer Link: www.tuwien.ac.at

Radionuklid-Therapie gegen kleine Tumore und Metastasen

Pressemitteilung der TU München vom 16.06.2011

Neue Waffe im Kampf gegen Krebs:

Im Kampf gegen Krebs könnte der Medizin schon bald ein neuer Verbündeter zur Seite stehen: Terbium-161. Seine wichtigste Waffe: Konversions- und Auger-Elektronen. Aufbauend auf dem Radionuklid Terbium-161 haben Wissenschaftler der Technischen Universität München (TUM) eine neue Therapie entwickelt, mit der vielleicht schon bald kleinere Tumore und Metastasen gezielter behandeln werden können. Das Nuklid wurde an der Forschungs-Neutronenquelle der TUM hergestellt und seine Wirksamkeit in Kooperation mit dem Paul Scherrer Institut (Villigen/Schweiz) erfolgreich an Krebszellen getestet.

Nicht immer ist die Diagnose Krebs ein Todesurteil. Inzwischen gibt es eine ganze Reihe von Möglichkeiten Krebs zu behandeln. Neben Bestrahlung und Chemotherapie ist auch die Radionuklid-Therapie ein wichtiger Baustein im Kampf gegen die mutierten Zellen geworden. Dabei werden radioaktive Elemente, sogenannte Nuklide, in den Blutkreislauf der Patienten injiziert. Gebunden an spezielle Moleküle, die sich bevorzugt an Krebszellen anlagern, werden sie vom Herzen durch den Körper gepumpt, bis sie sich schließlich an die Zellwand einer Krebszelle anheften. Dort zerfallen sie und geben dabei Strahlung an ihre Umgebung ab. Diese attackiert die Krebszellen aus nächster Nähe und zerstört sie im besten Fall.

Ein bereits in der Klinik eingesetztes Nuklid ist das Lutetium-177. Bei seinem Zerfall entstehen schnelle Elektronen, sogenannte Beta-Teilchen. Ihre Reichweite beträgt in menschlichem Gewebe bis zu 100 Mikrometer, das Fünffache des Durchmessers einer Tumorzelle. Sie können daher auch gesundes Gewebe schädigen. Dr. Silvia Lehenberger, Radiochemikerin an der TU München, gelang es nun, das Nuklid Terbium-161 in therapeutisch relevanten Mengen und mit hoher Reinheit herzustellen. Dieses emittiert nicht nur die Beta-Teilchen sondern auch zusätzlich Konversions- und Auger-Elektronen, deren Reichweite nur zwischen 0,5 und 30 Mikrometern beträgt. Sie liegen damit genau im Bereich der Größe einer Tumorzelle und sind daher zur Bekämpfung kleinerer Tumore und von Metastasen bestens geeignet. „Hinzu kommt, dass das Nuklid einen höheren Energiegehalt besitzt als vergleichbare Teilchen“, erklärt Silvia Lehenberger.“Dem Patienten muss deshalb weniger davon verabreicht werden, was wiederum eine Reduzierung der Strahlenbelastung bedeutet.“

Wie Lutetium oder das von Hochleistungsmagneten her bekannte Neodym ist Terbium ein Metall der sogenannten Seltenen Erden. Die Elemente der Seltenen Erden sind sich chemisch extrem ähnlich. Außerdem sind im Rohprodukt noch Verunreinigungen enthalten, die für eine klinische Anwendung unerwünscht sind. Eine wesentliche Aufgabe war es daher, geeignete Trennverfahren zu entwickeln, um das Terbium-161 möglichst rein isolieren zu können. Wesentlichen Anteil an der Entwicklung dieses Trennverfahrens hatte Mitautor und TUM-Kollege Christoph Barkhausen. Die Ähnlichkeit der Elemente der Seltenen Erden hat aber auch einen Vorteil: Die für Lutetium-177 ausgearbeitete medizinische Applikation kann auch für Terbium-161 genutzt werden.

In Kooperation mit Forschern am Paul Scherrer Institut in Villigen (Schweiz) konnte Silvia Lehenberger bereits die Wirksamkeit des Nuklids an Krebszellen im Labor nachweisen. Doch dies ist nur der erste Schritt auf dem Weg zum fertigen Medikament. Bevor es in Kliniken Menschen verabreicht werden darf, muss noch eine Vielzahl an Tests absolviert werden.

Die Forscher stellten das Nuklid Terbium-161 durch Neutronenbestrahlung an der Garchinger Forschungs-Neutronenquelle FRM II aus Gadolinium-160 her. Für therapeutische Zwecke ist Terbium-161 aufgrund seiner Halbwertszeit von nur 6,9 Tagen sehr gut geeignet. Einerseits ist es nach der Produktion ohne größeren Aktivitätsverlust in die anwendende Klink zu transportieren, anderseits ist die Strahlung bereits nach 50 Tagen auf ein Prozent des ursprünglichen Wertes abgeklungen.

Die Arbeit entstand im Rahmen einer Kooperation zwischen der Radiochemie München (RCM) der TUM sowie dem Zentrum für Radiopharmazie und dem Labor für Radio- und Umweltchemie am Paul Scherrer Institut (Villigen, Schweiz). Terbium-161 wurde hauptsächlich an der Neutronenquelle der TU München in Garching sowie am Institut Laue-Langevin in Grenoble und in der Neutronenquelle des Helmholtz-Zentrums Berlin hergestellt. Lutetium-177 für Vergleichsversuche stellte die Isotope Technologies Garching GmbH (ITG) zur Verfügung, die dieses Nuklid seit mehreren Jahren an Kliniken zu Therapiezwecken liefert.

Originalpublikation:
Silvia Lehenberger, Christoph Barkhausen, Susan Cohrs, Eliane Fischer, Jürgen Grünberg, Alexander Hohn, Ulli Köster, Roger Schibli, Andreas Türler, Konstantin Zhernosekov,
The low-energy β− and electron emitter 161Tb as an alternative to 177Lu for targeted radionuclide therapy,
Journal of Nuclear Medicine and Biology, DOI: 10.1016/j.nucmedbio.2011.02.007

Externer Link: www.tu-muenchen.de

Nicht EHEC, sondern EAHEC

Presseinformation der Universität Göttingen vom 15.06.2011

Göttinger Mikrobiologen entschlüsseln Genom des Erregers – Erklärung für aggressives Verhalten

(pug) Wissenschaftler der Universität Göttingen haben die genetische Information des Bakteriums Escherichia coli (E. coli O104:H4) entschlüsselt, das die sogenannten EHEC-Erkrankungen verursacht. Zum Einsatz kam dabei die Roche-454-Sequenzierungstechnologie. Die untersuchten Proben stammen von zwei Patienten aus Hamburg. „Die Ergebnisse erlauben wichtige Rückschlüsse darauf, weshalb das besonders in Norddeutschland grassierende Bakterium so aggressiv ist“, so Dr. Rolf Daniel, Leiter des Göttinger Laboratoriums für Genomanalyse.

Die neuen Sequenzdaten deuten darauf hin, dass die Patientenisolate nicht etwa aus einem EHEC-Erreger hervorgegangen sind, sondern vielmehr aus einem Keim, den man als EAEC (Entero-Aggregativer Escherichia coli) bezeichnet. Dieser zeichnet sich dadurch aus, dass er sich besonders fest an Epithelien bindet, Zellaggregate bildet und sein normales, krank machendes Programm abspult. Mehr als 96 Prozent des nun untersuchten genetischen Materials aus Hamburg und eines EAEC-Stammes sind identisch. Der EAEC-Keim hat sein krank machendes Potenzial erheblich gesteigert, indem er aus anderen E. coli-Stämmen wie beispielsweise EHEC mit Hilfe von Bakterienviren (Phagen) ein spezielles Gen übernommen und fest in seinem eigenen Chromosom verankert hat. Dieses Gen bildet das sogenannte Shiga-Toxin, welches ursprünglich aus dem Erreger der Bakterienruhr stammt. Es ist ein besonderes Gift, das das hämorrhagisch-urämische Syndrom (HUS) auslösen kann, also Blutzersetzung, sowie dessen Folgeschäden wie beispielsweise Nierenversagen. Diese Kombination verleiht dem neuen Keim seine Gefährlichkeit: Seine Zellen können durch Anheftung und Aggregation einen massiven Infektionsherd im Darm bilden, und diese Zellmasse produziert mit dem Shiga-Toxin ein sehr wirksames Gift. Darüber hinaus schützt ein sogenanntes Resistenzplasmid den Keim vor einem breiten Spektrum von Antibiotika.

Die Göttinger Wissenschaftler schlagen für den neuen Erreger die Bezeichnung EAHEC (Entero-Aggregativer-Hämorrhagischer E. coli) vor.

Externer Link: www.uni-goettingen.de