Saubere Luft durch Pflastersteine

Mediendienst der Fraunhofer-Gesellschaft vom August 2010

In deutschen Städten werden die zulässigen Grenzwerte für das gesundheitsschädliche Stickoxid regelmäßig überschritten. Einen wichtigen Beitrag zum Umweltschutz sollen jetzt neuartige Pflastersteine leisten. Sie sind mit Nanopartikeln aus Titandioxid beschichtet und können Stickoxidkonzentrationen in der Luft reduzieren.

Um die Luftqualität in Deutschland ist es nicht zum besten bestellt. Das belegen die Daten des Umweltbundesamts für das Jahr 2009: An 55 Prozent der Luftmessstationen in Städten wurden die zulässigen Grenzwerte von gesundheitsschädlichem Stickoxid überschritten. Eine der Hauptemissionsquellen ist laut Umweltbundesamt der Autoverkehr. Neue Wege im Kampf gegen die Luftverschmutzung geht jetzt die Barockstadt Fulda. Rund um die Petersberger Straße, wo der Jahresgrenzwert von 40 Mikrogramm pro Kubikmeter Luft (μg/m3) 2009 überschritten wurde, sollen luftreinigende Pflastersteine verlegt werden. Deren Oberflächen sind mit Titandioxid (TiO2) beschichtet, das Schadstoffe wie Stickoxide in Nitrate umwandelt. Das Titandioxid als Photokatalysator nutzt für diesen chemischen Prozess das Sonnenlicht. Das heißt, es verändert die Geschwindigkeit der Reaktion unter Lichteinfluss. Entwickelt wurde das Stickoxid reduzierende Pflaster namens AirClean von der Firma F.C. Nüdling Betonelemente. Den Beleg über die Wirksamkeit der Steine lieferte das Fraunhofer-Institut für Molekularbiologie und Angewandte Oekologie IME in Schmallenberg. Die IME-Forscher haben auch das Umweltrisiko des entstehenden Produkts Nitrat ermittelt. Gefördert wurde das Projekt durch die Deutsche Bundesstiftung Umwelt.

»Dass photokatalytische Pflastersteine die Luftqualität verbessern können, haben bereits Untersuchungen in italienischen Städten ergeben. Wir wollten prüfen, inwieweit diese Effekte auch in Deutschland – bei geringerer Lichtintensität und Sonnenscheindauer – gemessen werden können. Denn je intensiver die Sonneneinstrahlung ist, desto schneller erfolgt der Abbau der Schadstoffe. Ziel war es also, eine Rezeptur mit der höchsten photokatalytischen Effizienz zu finden«, erläutert Dr. Monika Herrchen, Wissenschaftlerin am IME.

Zunächst fertigte der Betonhersteller Mustersteine, wobei Oberfläche, Farbe, Zementsorte und TiO2-Gehalt variiert wurden. Da die Abbauraten von Stickoxid mit handelsüblichem photokatalytisch aktivem, also auf Sonneneinstrahlung reagierenden Zement nicht ausreichend waren, musste die Firma F.C. Nüdling eine eigene, wirksamere Rezeptur entwickeln. »In verschiedenen Tests konnten wir die Wirksamkeit der optimierten Steine belegen«, bestätigt Herrchen. Im Langzeitfeldversuch wiesen die Forscherin und ihr Team in eigens angelegten Straßenschluchten Stickoxid- Abbauraten von 20 bis 30 Prozent nach. Die Messungen erfolgten in einer Höhe von drei Metern über dem photokatalytischen Pflaster bei wechselnden Wind- und Helligkeitsverhältnissen. Bei Windstille stellten die Experten sogar Abbauraten für Stickstoffmonoxid (NO) und Stickstoffdioxid (NO2) von jeweils bis zu 70 Prozent fest.

Bei Messungen am bereits mit dem Pflasterstein AirClean belegten Gothaer Platz in Erfurt wurde in drei Metern Höhe eine durchschnittliche Abbaurate von 20 Prozent bezüglich NO2 und 38 Prozent bezüglich NO erreicht.

»Die Pflastersteine sind auch langzeitstabil. Im Zeitraum von 14 bis 23 Monaten nach dem Verlegen des Bodens konnten wir keine Veränderung der anfänglichen Abbaukapazität feststellen«, sagt die Wissenschaftlerin. Auch ein Umweltrisiko durch Nitrat, das beim photokatalytischen Abbau von Stickoxiden entsteht, bestehe nicht. Es gelangt in die Kanalisation, von dort führt der Weg in die Kläranlage und zu guter Letzt landet es auf dem Acker und im Grundwasser. Doch die maximal mögliche Nitratkonzentration, die sich auf photokatalytische Reaktionen zurückführen lässt, liegt bei fünf Milligramm pro Liter (mg/l). Zum Vergleich: Der Nitrat-Grenzwert für Grundwasser beträgt 50 mg/l. »Alles in allem kann man sagen, dass AirClean die Luftqualität signifikant und schnell verbessert und so zum Umweltschutz beiträgt«, resümiert die Forscherin.

Externer Link: www.fraunhofer.de

Die pulsierende Leere nach dem Elektron

Presseinformation der Max-Planck-Gesellschaft vom 04.08.2010

Ultrakurze Pulse zeigen erstmals in Echtzeit, was in einem Atom passiert, aus dem ein einzelnes Elektron herausgeschlagen wurde

Wie Elektronen sich in der äußeren Schale eines Atoms bewegen, hat ein internationales Team um Forscher des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München beobachtet. Die Physiker haben in einem Edelgasatom den quantenmechanischen Prozess verfolgt, der dort stattfindet, wo kurz zuvor ein Elektron aus seiner Umlaufbahn herausgeschlagen wurde. Demnach hinterlässt das Elektron dabei ein pulsierendes Loch. Für das Experiment nutzten die Forscher Lichtpulse, die nur wenig mehr als 100 Attosekunden dauern. Sie eröffnen damit die Möglichkeit, die Bahnen von Elektronen auch in Molekülen und Festkörpern zu beobachten. (Nature, 5. August 2010; Doi:10.1038/nature09212)

Quantenteilchen, wie Elektronen, sind flüchtige Zeitgenossen. Wo genau sich Elektronen in einem Atom aufhalten, kann niemand sagen. Die Elementarteilchen folgen den Gesetzen der Quantenmechanik: Quantenphysiker können nicht zugleich die Bewegung und den Aufenthaltsort eines Teilchens bestimmen. Daher geben sie für den Aufenthaltsort nur Wahrscheinlichkeiten an, die die Form von Wolken annehmen. Mit einer bestimmten Wahrscheinlichkeit halten sie sich jeweils in einem charakteristisch geformten Orbital auf. Manchmal besetzt ein Elektron zwei oder mehr Orbitale auf einmal, Physiker sprechen dann von einem Überlagerungszustand. Dann nimmt die Aufenthaltswahrscheinlichkeit der Partikel die Form einer pulsierenden Wolke an. Um sich zwischen den verschiedenen Aufenthaltsräumen hin- und her zu bewegen brauchen die Elektronen nur einige hundert Attosekunden. Eine Attosekunde ist ein Milliardstel einer milliardstel Sekunde.

Die Bewegung von Elektronen haben die Forscher um Ferenc Krausz, Direktor am Max-Planck-Institut für Quantenoptik und Professor an der Ludwig-Maximilians-Universität, nun erstmals verfolgt. In einer Kooperation mit der King-Saud-Universität (Riad, Saudi-Arabien), des Argonne National Laboratory (USA) und der University of California, Berkeley (USA) haben die Physiker zunächst ein Elektron aus der äußeren Hülle eines Kryptonatoms herausgelöst. Anschließend haben sie gemessen, wie sich die Wolke der verbleibenden Elektronen bewegt.

Bei ihren Experimenten ließen die Physiker Laserpulse aus dem sichtbaren Bereich des Spektrums auf Kryptonatome treffen. Die Lichtpulse mit einer Dauer von weniger als vier Femtosekunden – eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde – schlugen aus den äußeren Schalen der Atome jeweils ein Elektron heraus. Das Atom wird dann zum positiv geladenen Ion. An der Stelle, an der das Elektron das Atom verlassen hat, entsteht ein positiv geladenes Loch. Quantenmechanisch gesehen pulsiert dieser freie Platz nun im Atom weiter als sogenannte Quantenschwebung.

Erkenntnisse, die zu den Grenzen der Elektronik führen

Das Pulsieren haben die Physiker nun mit einem zweiten, nur noch 150 Attosekunden langen Puls von extrem kurzwelligem ultraviolettem Licht direkt beobachtet, also quasi gefilmt. Es stellte sich heraus, dass sich die Position des Lochs im Ion, also der positiv geladenen Stelle, innerhalb von nur rund sechs Femtosekunden zyklisch zwischen einer langgestreckten keulenartigen und einer kompakten zusammengezogenen Form hin und her bewegt. „Damit ist es uns zum ersten Mal gelungen, die Veränderung einer Ladungsverteilung in einem Atom direkt aufzuzeichnen“, erklärt Eleftherios Goulielmakis, Forschungsgruppenleiter im Labor für Attosekundenphysik von Ferenc Krausz.

„Mit unseren Experimenten haben wir einen einzigartigen Echtzeit-Einblick in den Mikrokosmos erhalten“, erläutert Ferenc Krausz. „Wir haben erstmals die quantenmechanischen Vorgänge in einem ionisierten Atom mit Attosekunden-Lichtblitzen aufgezeichnet.“ Die Erkenntnisse helfen, die blitzschnelle Dynamik von Elementarteilchen außerhalb des Atomkerns besser zu verstehen.

In weiteren Untersuchungen wollen die Physiker des Labors für Attosekundenphysik filmen, wie sich Elektronen in Molekülen und Festkörpern bewegen. Damit werden sie auch neue Einsichten in biologische und chemische Prozesse ermöglichen, die letztlich immer auf der Bewegung von Elektronen beruhen. Sobald sich diese Prozesse mit exakteren Modellen beschreiben lassen, eröffnen sich möglicherweise auch neue Einsichten in die mikroskopischen Ursachen schwerer Krankheiten. Das Verständnis der ultraschnellen elektronischen Prozesse dürfte aber auch dazu beitragen, die elektronische Datenverarbeitung schrittweise zur ultimativen Grenze der Elektronik zu beschleunigen. [TN/PH]

Originalveröffentlichung:
Eleftherios Goulielmakis, Zhi-Heng Loh, Adrian Wirth, Robin Santra, Nina Rohringer, Vladislav S. Yakovlev, Sergey Zherebtsov, Thomas Pfeifer, Abdallah M. Azzeer, Matthias F. Kling, Stephen R. Leone und Ferenc Krausz
Real-time observation of valence electron motion
Nature, 5. August 2010, Doi:10.1038/nature09212

Externer Link: www.mpg.de

Rundholz mit Antenne

Mediendienst der Fraunhofer-Gesellschaft vom August 2010

Funk-Etiketten auf Holzbasis sollen künftig die Logistikprozesse in der Forstwirtschaft optimieren. Die RFID-Transponder bestehen aus Papier und dem Pflanzenbestandteil Lignin. So stören sie nicht bei der Verarbeitung der Stämme und ermöglichen es dennoch, komplette Lkw-Fuhren mit Rundholz zu erfassen.

Waldspaziergängern sind sie bestens bekannt, die farbigen Markierungen auf den Baumstämmen, die längs der Forstwege auf ihren Abtransport warten. Zu deuten wissen sie freilich nur Eingeweihte. »Im Prinzip hat jeder Förster oder Waldbesitzer sein eigenes Kennzeichnungssystem«, stellt Mike Wäsche vom Fraunhofer-Institut für Fabrikbetrieb und -automatisierung IFF in Magdeburg fest. Der Wirtschaftsinformatiker will die Markierungen durch einheitliche RFID-Transponder, sprich Funk-Etiketten, ersetzen – gemeinsam mit Kollegen vom Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM in Berlin, der Thüringer Landesanstalt für Wald, Jagd und Fischerei sowie weiteren Partnern aus der Forstwirtschaft. Gleichzeitig soll ein RFID-basierter Logistik-Standard für den Datenaustausch zwischen Waldbesitzern, Ernte- und Fuhrunternehmen sowie den gewerblichen Endabnehmern etabliert werden.

Im forstlichen Umfeld gibt es zwar seit 2002 den ELDAT-Standard für den ELektronischen DATenaustausch von Verkaufsinformationen. Logistische Prozesse sind darin aber nur ansatzweise berücksichtigt. Dazu kommen Lücken in der IT-Infrastruktur: »Informationstechnologien setzen bislang eigentlich nur die großen Akteure ein«, bedauert Wäsche. Von einem durchgängigen elektronischen Datenaustausch in Verbindung mit RFID könnten jedoch alle Beteiligten profitieren – auch die kleinen und mittleren Betriebe, die meist für Holzernte und Transport zuständig sind: Daten wie Herkunft, Qualität, Menge und Bestimmungsort der Stämme müssen nur noch einmal erfasst werden. Außerdem lässt sich das Holz schnell und sicher zuordnen, was die Abrechnung beschleunigt und die Abfuhrkontrolle vereinfacht.

Hochwertiges Stammholz für Möbel oder Parkett wird häufig schon mit Nummernplättchen oder Funk-Etiketten gekennzeichnet. Die Partner des Projekts »Intelligentes Holz – RFID in der Rundholzlogistik« wollen jedoch eine praktikable Lösung, die sich zum Kennzeichnen aller Holzsorten eignet – auch der gut zehn Millionen Kubikmeter Industrieholz, die jährlich in Deutschland anfallen. Industrieholz wird aufgefasert und zu Zellstoff, Papier oder Holzwerkstoff-Platten verarbeitet. »Die Gewinnmargen in diesem Sektor sind gering, deshalb dürfen die eingesetzten RFID-Transponder weder viel kosten, noch bei der weiteren Verarbeitung des Holzes stören«, betont Projektleiter Wäsche. Das Team am IZM hat daher einen Transponder auf Holzbasis entwickelt: Mit Ausnahme der Antenne besteht der »Tag« aus Papier und Lignin. Das harzartige Polymer fällt in großen Mengen bei der Gewinnung von Cellulose aus Holz an. »Der Metallanteil des Transponders liegt weit unter dem, was sonst an Verunreinigungen im und am Holz üblich ist«, erklärt Christine Kallmayer, Gruppenleiterin am IZM.

Um die Kosten gering zu halten, wird auf den Funk-Etiketten nur ein Zahlencode gespeichert. Alle weiteren Informationen sind in den Verwaltungs- und Abrechnungssystemen der einzelnen Akteure hinterlegt. Ausgelesen werden die Tags im Vorbeifahren: Bei der Anlieferung am Werk passiert der LKW samt Ladung ein Reader-Gate. Alle angelieferten Stämme werden noch auf dem Fahrzeug im Pulk erfasst. Pro LKW-Ladung reichen theoretisch ein bis zwei RFID-Transponder, um alles eindeutig zu identifizieren. Stammt das Holz einer Fuhre von mehreren Lieferanten, muss für eine sichere Zuordnung mindestens jeder zwanzigste beziehungsweise jeder dreißigste Stamm gekennzeichnet werden – je nachdem, wie groß die einzelnen Chargen sind. Das Projekt läuft noch bis Anfang 2011, aber bereits jetzt denkt das IFF über Anfragen aus der Chemieindustrie nach: Hier könnten nach demselben Prinzip Metallfässer mit gefährlichen Flüssigkeiten pulkweise erfasst und verfolgt werden.

Externer Link: www.fraunhofer.de

Roboter erhalten künstliche Haut

Mediendienst der Fraunhofer-Gesellschaft vom Juli 2010

Roboter werden salonfähig: In Fabriken lange Zeit hinter Stahlzäune verbannt, erobern sie neue Einsatzfelder – etwa in der Produktion, im Haushalt oder im Pflegebereich. Für die notwendige Sicherheit sorgt ein taktiles Sensorsystem, das sich in den Fußboden integrieren oder als künstliche Haut direkt auf Robotern anbringen lässt.

Behutsam transportiert ein mobiler Roboter Proben durch ein Biolabor. Um ihn herum herrscht der übliche Laborbetrieb: Mitarbeiter diskutieren miteinander und führen ihre Versuche durch. Einer der Angestellten rempelt den Roboter versehentlich an, dieser stoppt seine Bewegung sofort. Möglich wird dies durch eine künstliche Haut auf der Oberfläche des Roboters. Diese aus leitfähigem Schaumstoff, Textilien und einer intelligenten Auswerteelektronik bestehende Sensorik erfasst, wo sie berührt wurde und unterscheidet zwischen sanften oder kräftigen Kontakten. Personen registriert sie sofort. In die Haut implementierte Sensorzellen, deren Form und Größe je nach Einsatzfall variieren kann, detektieren jede Berührung. Dabei gilt: Je höher die Anzahl der Sensorzellen, desto genauer kann der Kollisionspunkt bestimmt werden. Ein Sensorcontroller verarbeitet die Messwerte und leitet sie an den Roboter, wahlweise auch an einen Rechner, eine Maschine oder eine Produktionsanlage weiter.

Forscher des Fraunhofer-Instituts für Fabrikbetrieb und -automatisierung IFF in Magdeburg haben das Sensorverfahren 2008 für den Assistenzroboter LISA entworfen und zum Patent angemeldet. Aufgabe von LISA war es, in Biotechnik-Laboren Brutschränke und Messgeräte mit Probenschälchen zu bestücken und das Laborpersonal von solchen Tätigkeiten zu entlasten. Seitdem haben die Ingenieure das Sensorsystem für verschiedenste Einsatzfelder weiterentwickelt, etwa um Industrieroboter oder Fußbodenbeläge damit auszustatten. Berührungen mit Menschen oder Gegenständen sollen künftig zuverlässig erfasst werden. Eine Grundvoraussetzung, um Roboter auch im Umfeld des Menschen ohne Schutzzäune einsetzen zu können. »Unsere künstliche Haut lässt sich jetzt an beliebige, komplexe Geometrien anpassen – gekrümmte oder sehr große Flächen eingeschlossen. »Mit großflächigen Fußbodensensoren definieren wir Sicherheitszonen, die der Mensch nicht betreten darf«, sagt Markus Fritzsche, Wissenschaftler am IFF. »Diese Bereiche lassen sich dynamisch ändern«. Die taktile Haut funktioniere nun auch als Eingabemedium, etwa um Roboter zu führen. Dabei werde die Berührung in Bewegung umgesetzt. »Große Kraftaufwendung ist dafür nicht erforderlich. Berühre ich den Roboter, so versucht er, dem Druck auszuweichen. Selbst einen 200 Kilo schweren Roboter kann ich auf diese Weise in die gewünschte Richtung schieben«, beschreibt Fritzsche die Vorteile des Systems. Eine weitere Besonderheit der künstlichen Haut: Integrierte Dämpfungselemente schwächen etwaige Kollisionen zusätzlich ab, indem sie Stöße abfedern.

Mittlerweile liegt das taktile Sensorsystem in verschiedenen Varianten vor, das Hüllmaterial rangiert von atmungsaktiv bis wasserdicht. »Dadurch eröffnen sich ganz neue Einsatzfelder, etwa in der Medizintechnik oder der Produktion«, sagt Fritzsche. »Der drucksensitive Fußboden ist ideal zur Arbeitsraumüberwachung in der Produktion oder auch, um stürzende Patienten – etwa im Pflegeheim – unmittelbar zu registrieren. Mit der künstlichen Haut ausgestattete Roboter und bewegte Maschinen erkennen jeden Zusammenstoß und bremsen sofort. Zudem können wir Robotergreifern einen Tastsinn geben und so feststellen, ob sie tatsächlich etwas gegriffen haben«.

Viele Varianten der künstlichen Haut liegen derzeit als Prototyp vor. »In naher Zukunft wird uns die künstliche Haut auf verschiedenste Art im Alltag begegnen«, ist Fritzsche überzeugt.

Externer Link: www.fraunhofer.de

CSI im Dienst der Cellulose-Synthese

Presseinformation der Max-Planck-Gesellschaft vom 14.07.2010

Neu entdecktes Protein ist an der Bildung von Cellulose beteiligt

Getreide, Gemüse und Obst sind wichtige Energielieferanten der menschlichen Ernährung. Den Hauptbestandteil von Pflanzen – die Cellulose in der Zellwand – können wir allerdings gar nicht verwerten. Selbst bei Wiederkäuern, die Cellulose verdauen können, spielt die Verdaulichkeit der Zellwand eine entscheidende Rolle für die Futterverwertung. Wissenschaftler arbeiten deshalb daran, pflanzliche Zellwände zur Energiegewinnung zu nutzen und die Verdaulichkeit von Futter zu erhöhen. Dafür müssen sie zunächst verstehen, wie Pflanzenzellen ihre Zellwand aus Cellulose aufbauen und welche Gene und Proteine daran beteiligt sind. Wissenschaftler am Max-Planck-Institut für Molekulare Pflanzenphysiologie in Potsdam-Golm haben nun zusammen mit Kollegen aus den USA ein bislang unbekanntes Protein entdeckt, das zur Cellulose-Produktion benötigt wird. (PNAS, 1. Juli 2010, online vorab veröffentlicht)

Pflanzliche Zellen besitzen im Unterschied zu Zellen von Tieren eine Zellwand aus verschiedenen Zuckerpolymeren, deren Hauptbestandteil Cellulose ist. Sie gibt der Pflanze ihre Stabilität, schützt sie vor Krankheitserregern und ist an der Samenkeimung und der Fruchtreife beteiligt. Pflanzen bestehen zu 35 bis 50% ihres Trockengewichts aus Cellulose – es ist damit das häufigste Biopolymer der Erde.

Cellulose wird durch einen Protein-Komplex direkt an der Plasmamembran synthetisiert. Die einzige bisher bekannte Komponente dieses Komplexes ist die Cellulose-Synthase (CESA). Dieses Enzym kommt in Pflanzenzellen in verschiedenen Formen mit jeweils unterschiedlichem Aufbau vor. Genetische Studien weisen darauf hin, dass drei dieser Formen – CESA1, CESA3 und CESA6 – für die Synthese der primären Zellwand benötigt werden, während CESA4, CESA7 und CESA8 für die Synthese der sekundären Zellwand erforderlich sind. Die primäre Zellwand bildet sich während des Zellwachstums und ist besonders flexibel und dehnbar. Die sekundäre Zellwand entsteht dagegen nach Abschluss des Wachstums und ist dicker und starrer ist als die primäre Zellwand.

Bislang war unbekannt, aus wie vielen CESA-Formen der Proteinkomplex besteht und ob noch weitere Proteine darin enthalten sind. Wissenschaftler um Staffan Persson am Max-Planck-Institut für Molekulare Pflanzenphysiologie haben in Zusammenarbeit mit Kollegen aus den USA das Cellulose Synthase-Interactive Protein – CSI1 – identifiziert, das an der Cellulose-Synthese beteiligt ist. CSI1 scheint mit dem CESA-Komplex verbunden zu sein, denn es interagiert mit den Cellulose-Synthasen der primären Zellwand (CESA1, 3 und 6). Die Forscher konnten zeigen, dass das Protein eine wichtige Rolle bei der Bildung von Cellulose spielt. „Pflanzen, die aufgrund einer Mutation kein CSI1 bilden können, produzieren nachweislich weniger Cellulose. Sie haben verkürzte und geschwollene Wurzeln und ihre Pollenkörner fallen in sich zusammen“, erklärt Staffan Persson.

Welche Funktion CSI1 bei der Cellulose-Synthese hat, wissen die Wissenschaftler allerdings noch nicht. Sie vermuten, dass das Protein die Geschwindigkeit der Cellulose-Produktion und die räumliche Ausrichtung der einzelnen Cellulose-Fibrillen beeinflusst. Deshalb wollen die Forscher als nächstes die genaue Rolle von CSI1 untersuchen. Die Erkenntnisse aus diesen weiterführenden Untersuchungen werden zu einem verbesserten Verständnis der Biosynthese von Zellwänden beitragen. Dieses Wissen könnte die Chancen auf eine bessere Zellwandverdaulichkeit in der Tierfütterung oder die Nutzung von Zellwänden zur Energiegewinnung erhöhen. [URS]

Originalveröffentlichung:
Ying Gu, Nick Kaplinsky, Martin Bringmann, Alex Cobb, Andrew Carroll, Arun Sampathkumar, Tobias I. Baskin, Staffan Persson und Chris R. Somerville
Identification of a cellulose synthase-associated protein required for cellulose biosynthesis
PNAS, 1. Juli 2010, online vorab veröffentlicht (doi: 10.1073/pnas.1007092107)

Externer Link: www.mpg.de